Hydrodynamic modeling of Bicoid morphogen gradient formation in Drosophila embryo.

Biomech Model Mechanobiol

Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai, 200072, China.

Published: December 2016

Bicoid is a maternal polarity determinant that mediates the anterior-posterior (AP) patterning in early Drosophila embryo. During oogenesis, its mRNA deposits at the anterior pole of the embryo and then translates to establish the Bicoid morphogen gradient soon after fertilization. Previous investigations indicated that the patterning is induced by the spatial gradient of Bicoid morphogen concentration, where the cytoplasmic convection plays a crucial role. The present study examines the effect of advection transport on the formation of the Bicoid morphogen gradient using direct simulation of the cytoplasmic streaming described by Navier-Stokes equations, in which the cytoplasm behaves as an incompressible Newtonian fluid. To simulate the cytoplasmic streaming originated from membrane contractions, the flow is driven by slip velocities along the cortex and the anterior-posterior axis of the cell. Results show that the Bicoid concentration distribution we obtained provides a quantitatively consistent picture with the experiment measurements, as well as the diffusive length scale. The competition among the diffusion, advection and degradation is analyzed when the cytoplasmic streaming is considered. It is found that the advection yields wavy phenomenon in the profiles of the Bicoid concentration at small diffusion coefficients, which might have important effects on the embryonic development. After the driven velocities is switched off, the interior flow evanesces gradually due to the viscous drag, the Bicoid degradation will overwhelm the advection effect.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10237-016-0796-zDOI Listing

Publication Analysis

Top Keywords

bicoid morphogen
16
morphogen gradient
12
cytoplasmic streaming
12
bicoid
8
drosophila embryo
8
bicoid concentration
8
hydrodynamic modeling
4
modeling bicoid
4
morphogen
4
gradient
4

Similar Publications

Transcription factors (TFs) regulate gene expression despite constraints from chromatin structure and the cell cycle. Here we examine the concentration-dependent regulation of by the Bicoid morphogen through a combination of quantitative imaging, mathematical modeling and epigenomics in embryos. By live imaging of MS2 reporters, we find that, following mitosis, the timing of transcriptional activation driven by the P2 ( P2) enhancer directly reflects Bicoid concentration.

View Article and Find Full Text PDF

Both the transcriptional activator, Bcd, and repressor, Cic, form small mobile oligomeric clusters.

Biophys J

August 2024

Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada. Electronic address:

Transcription factors play an essential role in pattern formation during early embryo development, generating a strikingly fast and precise transcriptional response that results in sharp gene expression boundaries. To characterize the steps leading up to transcription, we performed a side-by-side comparison of the nuclear dynamics of two morphogens, a transcriptional activator, Bicoid (Bcd), and a transcriptional repressor, Capicua (Cic), both involved in body patterning along the anterior-posterior axis of the early Drosophila embryo. We used a combination of fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, and single-particle tracking to access a wide range of dynamical timescales.

View Article and Find Full Text PDF

Morphogen gradients provide essential positional information to gene networks through their spatially heterogeneous distribution, yet how they form is still hotly contested, with multiple models proposed for different systems. Here, we focus on the transcription factor Bicoid (Bcd), a morphogen that forms an exponential gradient across the anterior-posterior (AP) axis of the early Drosophila embryo. Using fluorescence correlation spectroscopy we find there are spatial differences in Bcd diffusivity along the AP axis, with Bcd diffusing more rapidly in the posterior.

View Article and Find Full Text PDF

Introduction: The bicoid (bcd) gene in Drosophila has served as a paradigm for a morphogen in textbooks for decades. Discovered in 1986 as a mutation affecting anterior development in the embryo, its expression pattern as a protein gradient later confirmed the prediction from transplantation experiments. These experiments suggested that the protein fulfills the criteria of a true morphogen, with the existence of a homeodomain crucial for activation of genes along the anterior-posterior axis, based on the concentration of the morphogen.

View Article and Find Full Text PDF

Two-fluid dynamics and micron-thin boundary layers shape cytoplasmic flows in early embryos.

Proc Natl Acad Sci U S A

October 2023

Department of Physics, École Normale Supérieure, Paris 75005, France.

Cytoplasmic flows are widely emerging as key functional players in development. In early embryos, flows drive the spreading of nuclei across the embryo. Here, we combine hydrodynamic modeling with quantitative imaging to develop a two-fluid model that features an active actomyosin gel and a passive viscous cytosol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!