Thermal injury causes resistance to many nondepolarizing muscle relaxants including d-tubocurarine, metocurine, pancuronium, and atracurium. To evaluate the role of pharmacokinetics and pharmacodynamics in this phenomenon, the disposition and effect of atracurium (0.5 mg/kg iv) were studied in thermally injured patients (5 males, 16-43 yr) in comparison with that in nonburned control patients (3 males, 1 female, 24-53 yr). The decline of plasma atracurium concentration with time was biexponential in both groups of patients. There were no significant differences in the mean value of any pharmacokinetic parameter (clearance, V1, V beta, alpha and beta half-lives). The time course of effect was also similar, although the maximum twitch depression was significantly smaller (66.1% vs. 100% maximal twitch depression) and time to recover to 50% of maximal twitch depression was significantly shorter (14.2 vs. 52 min) in thermally injured patients. Patients with thermal injury had an EC50 (plasma concentration of atracurium required for 50% of the maximum possible response) 3.4 times that of control patients. Plasma-free fraction of atracurium in the thermally injured patients was 75% that in controls, and free EC50 (the product of free fraction and EC50) of the thermally injured group was 2.7 times that of controls. The results of this study confirm a pharmacodynamic mechanism for the majority of resistance to atracurium, with a diminished free fraction in plasma also contributing to this effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00000542-198905000-00007 | DOI Listing |
Int J Ophthalmol
January 2025
Department of Encephalopathy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, Hubei Province, China.
Aim: To explore the neuroprotective effects of high mobility group box 2 () knockdown on retinal ganglion cells (RGCs) in the retinal ischemia-reperfusion injury (RIRI).
Methods: Oxygen-glucose deprivation (OGD)-injured RGCs from postnatal three-day C57BL/6 mice pups and high intraocular pressure (IOP)-induced RIRI mice were used as cellular and animal models of RIRI. The expression of HMGB2 in the retina of RIRI mice and OGD-injured RGCs was detected through reverse transcription-polymerase chain reaction (RT-qPCR) and Western blotting.
Sci Rep
January 2025
Department of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Yanta District, Xi'an, 710061, China.
Neuropathic pain (NP) is a complex and prevalent chronic pain condition that affects millions of individuals worldwide. Previous studies have shown that prior exercise protects against NP caused by nerve injury. However, the underlying mechanisms of this protective effect remain to be uncovered.
View Article and Find Full Text PDFMol Neurobiol
January 2025
The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
Changes in DNA methylation and subsequent alterations in gene expression have opened a new direction in research related to the pathogenesis of peripheral neuropathic pain (PNP). This study aimed to reveal epigenetic perturbations underlying DNA methylation in the dorsal root ganglion (DRG) of rats with peripheral nerve injury in response to prior exercise and identify potential target genes involved. Male Sprague-Dawley rats were divided into three groups, namely, chronic constriction injury (CCI) of the sciatic nerve, CCI with prior 6-week swimming training (CCI_Ex), and sham operated (Sham).
View Article and Find Full Text PDFAnn Burns Fire Disasters
December 2024
Plastic, Reconstructive and Aesthetic Surgery Center, National Burn Hospital, Ha Noi, Viet Nam.
This article presents particular occupational burn injuries resulting in a complex defect of the digits. Nine patients with exposed bone or tendon wounds on the digits were successfully treated using the pedicle adipofascial turnover flap overlaid with skin grafts. Electrical and high-temperature contact burns resulted in five and four severe cases, respectively.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
Cold allodynia is a debilitating symptom of orofacial neuropathic pain resulting from trigeminal nerve damage. The molecular and neural bases of this sensory alteration are still poorly understood. Here, using chronic constriction injury (CCI) of the infraorbital nerve (IoN) (IoN-CCI) in mice, combined with behavioral analysis, Ca imaging and patch-clamp recordings of retrogradely labeled IoN neurons in culture, immunohistochemistry, and adeno-associated viral (AAV) vector-based delivery , we explored the mechanisms underlying the altered orofacial cold sensitivity resulting from axonal damage in this trigeminal branch.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!