Mu-opioid receptor agonists represent mainstays of pain management. However, the therapeutic use of these agents is associated with serious side effects, including potentially lethal respiratory depression. Accordingly, there is a longstanding interest in the development of new opioid analgesics with improved therapeutic profiles. The alkaloids of the Southeast Asian plant Mitragyna speciosa, represented by the prototypical member mitragynine, are an unusual class of opioid receptor modulators with distinct pharmacological properties. Here we describe the first receptor-level functional characterization of mitragynine and related natural alkaloids at the human mu-, kappa-, and delta-opioid receptors. These results show that mitragynine and the oxidized analogue 7-hydroxymitragynine, are partial agonists of the human mu-opioid receptor and competitive antagonists at the kappa- and delta-opioid receptors. We also show that mitragynine and 7-hydroxymitragynine are G-protein-biased agonists of the mu-opioid receptor, which do not recruit β-arrestin following receptor activation. Therefore, the Mitragyna alkaloid scaffold represents a novel framework for the development of functionally biased opioid modulators, which may exhibit improved therapeutic profiles. Also presented is an enantioselective total synthesis of both (-)-mitragynine and its unnatural enantiomer, (+)-mitragynine, employing a proline-catalyzed Mannich-Michael reaction sequence as the key transformation. Pharmacological evaluation of (+)-mitragynine revealed its much weaker opioid activity. Likewise, the intermediates and chemical transformations developed in the total synthesis allowed the elucidation of previously unexplored structure-activity relationships (SAR) within the Mitragyna scaffold. Molecular docking studies, in combination with the observed chemical SAR, suggest that Mitragyna alkaloids adopt a binding pose at the mu-opioid receptor that is distinct from that of classical opioids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5189718 | PMC |
http://dx.doi.org/10.1021/jacs.6b00360 | DOI Listing |
Pediatr Res
January 2025
Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands.
Background: Repetitive neonatal painful procedures experienced in the neonatal intensive care unit (NICU) are known to alter the development of the nociceptive system and have long-lasting consequences. Recent evidence indicates that NICU stay affects the methylation of the opioid receptor mu 1 encoding gene (Mor-1). Additionally, a preclinical model of neonatal procedural pain established lower adult post-operative MOR-1 levels in the spinal cord.
View Article and Find Full Text PDFCureus
December 2024
Department of Surgery, Division of Plastic Surgery, University of Hawaii John A. Burns School of Medicine, Honolulu, USA.
Opioid medications are commonly employed for perioperative and postoperative pain management. However, these medications can negatively impact the body's innate pain management system, specifically the action of beta-endorphins. By impairing the function of mu-opioid receptors and inhibiting the release of beta-endorphin, opioids may exacerbate and prolong postoperative pain.
View Article and Find Full Text PDFClin Pharmacol Ther
January 2025
Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food & Drug Administration, Silver Spring, Maryland, USA.
In response to increased illicit use of synthetic opioids, various μ-receptor antagonist formulations, with varied pharmacological characteristics, have been and are being developed. To understand how pharmacologic characteristics such as absorption rate and clearance rate affect reversal in treating community opioid overdose, we used our previously published translational opioid model. We adapted this model with in vitro receptor binding data and clinical pharmacokinetic data of three intranasal nalmefene formulations along with an intranasal naloxone formulation to study the reversal of fentanyl and carfentanil-induced respiratory depression in chronic opioid users.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
It has been proposed that social groups are maintained both by reward resulting from positive social interactions and by the reduction of a negative state that would otherwise be caused by social separation. European starlings, Sturnus vulgaris, develop strong conditioned place preferences for places associated with the production of song in flocks outside the breeding season (gregarious song) and singers are motivated to rejoin the flock following removal. This indicates that the act of singing in flocks is associated with a positive affective state and raises the possibility that reward induced by song in flocks may play a role in flock maintenance.
View Article and Find Full Text PDFDrugs
January 2025
Palliative Medicine, Geisinger Medical Center, Danville, PA, USA.
Buprenorphine is an agonist at the mu opioid receptor (MOR) and antagonist at the kappa (KOR) and delta (DOR) receptors and a nociceptin receptor (NOR) ligand. Buprenorphine has a relatively low intrinsic efficacy for G-proteins and a long brain and MOR dwell time. Buprenorphine ceiling on respiratory depression has theoretically been related multiple factors such as low intrinsic efficacy at MOR, binding to six-transmembrane MOR and interactions in MOR/NOR heterodimers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!