The successful operation of rechargeable batteries relies on reliable insertion/extraction of ions into/from the electrodes. The battery performance and the response of the electrodes to such ion insertion and extraction are directly related to the spatial distribution of the charge and its dynamic evolution. However, it remains unclear how charge is distributed in the electrodes during normal battery operation. In this work, we have used off-axis electron holography to measure charge distribution during lithium ion insertion into a Ge nanowire (NW) under dynamic operating conditions. We discovered that the surface region of the Ge core is negatively charged during the core-shell lithiation of the Ge NW, which is counterbalanced by positive charge on the inner surface of the lithiated LixGe shell. The remainder of the lithiated LixGe shell is free from net charge, consistent with its metallic characteristics. The present work provides a vivid picture of charge distribution and dynamic evolution during Ge NW lithiation and should form the basis for tackling the response of these and related materials under real electrochemical conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.6b01099DOI Listing

Publication Analysis

Top Keywords

charge distribution
12
off-axis electron
8
electron holography
8
ion insertion
8
dynamic evolution
8
lithiated lixge
8
lixge shell
8
charge
7
direct mapping
4
mapping charge
4

Similar Publications

Background: Understanding the size and surface charge (ζ-potential) of particles in the mixed micellar fraction produced by in vitro digestion is crucial to understand their cellular absorption and transport. The inconsistent presentation of micellar size data, often limited to average particle diameter, makes comparison of studies difficult. The present study aimed to assess different size data representations (mean particle diameter, relative intensity- or volume-weighted size distribution) to better understand physiological mixed micelle characteristics and to provide recommendations for size reporting and sample handling.

View Article and Find Full Text PDF

Effect of Hyaluronan Molecular Weight on the Stability and Biofunctionality of Microfibers Assembled by Interfacial Polyelectrolyte Complexation.

ACS Appl Mater Interfaces

January 2025

3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal.

Nervous system disorders are characterized by a progressive loss of function and structure of neurons that ultimately leads to a decline in cognitive and motor functions. In this study, we used interfacial polyelectrolyte complexation (IPC) to produce fibers for neural tissue regeneration. IPC is a processing method that allows spinning of sensitive biopolymers.

View Article and Find Full Text PDF

Although electric vehicles supplied through distributed generators (DGs) have been universally researched to reduce CO emissions, the accurate current sharing regarding islanded multi-bus DC charging stations considering three charging modes of electric vehicles, i.e., constant current mode, constant power mode and constant voltage mode, is rarely realized.

View Article and Find Full Text PDF

Laser-Induced Metal-Organic Framework-Derived Flexible Electrodes for Electrochemical Sensing.

ACS Appl Mater Interfaces

January 2025

Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany.

The successful development of a metal-organic framework (MOF)-derived Co/CoO/C core-shell composite integrated into laser-induced graphitic (LIG) carbon electrodes for electrochemical sensing is reported. The sensors are fabricated via a direct laser scribing technique using a UV laser (355 nm wavelength) to induce the photothermolysis of rationally selected ZIF-67 into the LIG matrix. Electrochemical characterization reveals that the incorporation of the laser-scribed ZIF-67-derived composite on the electrode surface reduces the impedance more than 100 times compared with bare LIG sensors.

View Article and Find Full Text PDF

Enhancing Optical Properties of Lead-Free CsNaBiCl Nanocrystals via Indium Alloying.

Inorg Chem

January 2025

School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, PR China.

This study presents the synthesis and characterization of CsNaBiCl nanocrystals (NCs) doped with varying concentrations of In to improve their luminescent properties. Utilizing a colloidal solution method, we systematically varied the In concentration to identify the optimal alloying level for enhancing the photoluminescence (PL) properties of the CsNaBiCl NCs. Structural analysis confirmed that the In-alloyed NCs maintained high crystallinity and a uniform cubic shape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!