We demonstrate large-area silicon-on-insulator ring resonators with Q values of about 2×10 at critical coupling and 3.6×10 for heavily undercoupled conditions. A model has been developed to understand the impact of waveguide backscattering and subcomponent imperfections on the spectral response of our devices. The model predicts the appearance of signals at ports that would not have them under backscattering-free, ideal-power-splitting conditions. The predictions of our model are shown to match the phenomena observed in our measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.41.001538DOI Listing

Publication Analysis

Top Keywords

large-area silicon-on-insulator
8
silicon-on-insulator ring
8
ring resonators
8
effects backscattering
4
backscattering high-q
4
high-q large-area
4
resonators demonstrate
4
demonstrate large-area
4
resonators values
4
values 2×10
4

Similar Publications

The design of micro/nanostructures on silicon-on-insulator (SOI) devices has attracted widespread attention in the science and applications of integrated optics, which, however, are usually restricted by the current manufacturing technologies. Hence, in this paper, we propose a mask-free, one-step femtosecond laser lithography method for efficient fabrication of high-quality controllable planar photonic structures on SOI devices. Subwavelength gratings with high uniformity are flexibly prepared on a SOI wafer, and they can be efficiently extended for large-area fabrication with long-range uniformity.

View Article and Find Full Text PDF

Dirac-vortex topological cavities.

Nat Nanotechnol

December 2020

Institute of Physics, Chinese Academy of Sciences/Beijing National Laboratory for Condensed Matter Physics, Beijing, China.

Cavity design is crucial for single-mode semiconductor lasers such as the ubiquitous distributed feedback and vertical-cavity surface-emitting lasers. By recognizing that both of these optical resonators feature a single mid-gap mode localized at a topological defect in the one-dimensional lattice, we upgrade this topological cavity design concept into two dimensions using a honeycomb photonic crystal with a vortex Dirac gap by applying the generalized Kekulé modulations. We theoretically predict and experimentally show on a silicon-on-insulator platform that the Dirac-vortex cavities have scalable mode areas, arbitrary mode degeneracies, vector-beam vertical emission and compatibility with high-index substrates.

View Article and Find Full Text PDF

Layered two-dimensional (2D) graphene oxide (GO) films are integrated with silicon-on-insulator (SOI) nanowire waveguides to experimentally demonstrate an enhanced Kerr nonlinearity, observed through self-phase modulation (SPM). The GO films are integrated with SOI nanowires using a large-area, transfer-free, layer-by-layer coating method that yields precise control of the film thickness. The film placement and coating length are controlled by opening windows in the silica cladding of the SOI nanowires.

View Article and Find Full Text PDF

Nanoscale Layer Transfer by Hydrogen Ion-Cut Processing: A Brief Review Through Recent U.S. Patents.

Recent Pat Nanotechnol

January 2018

Department of Mechanical Engineering, National Central University, Taoyuan City. Taiwan.

Background: A hydrogen-based Ion-Cut layer-transfer technique, the so-called Ion-Cut or Smart-Cut processing, has been used in transferring a semiconductor membrane onto a desired substrate to reveal unique characteristics on a nanoscale size and to build functional electronic and photonic devices that are used for specific purposes. For example, the sub-100 nm thick silicon membrane transferred onto an insulator became a key substrate for fabricating nanoscale integrated circuit (IC) devices. Recent U.

View Article and Find Full Text PDF

Direct integration of high-performance laser diodes on silicon will dramatically transform the world of photonics, expediting the progress toward low-cost and compact photonic integrated circuits (PICs) on the mainstream silicon platform. Here, we report, to the best of our knowledge, the first 1.3 μm room-temperature continuous-wave InAs quantum-dot micro-disk lasers epitaxially grown on industrial-compatible Si (001) substrates without offcut.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!