The mechanism by which chromatids and chromosomes are segregated during mitosis and meiosis is a major puzzle of biology and biophysics. Using polymer simulations of chromosome dynamics, we show that a single mechanism of loop extrusion by condensins can robustly compact, segregate and disentangle chromosomes, arriving at individualized chromatids with morphology observed in vivo. Our model resolves the paradox of topological simplification concomitant with chromosome 'condensation', and explains how enzymes a few nanometers in size are able to control chromosome geometry and topology at micron length scales. We suggest that loop extrusion is a universal mechanism of genome folding that mediates functional interactions during interphase and compacts chromosomes during mitosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914367 | PMC |
http://dx.doi.org/10.7554/eLife.14864 | DOI Listing |
EMBO J
January 2025
Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
Genomic DNA is assembled into chromatin by histones, and extruded into loops by cohesin. These mechanisms control important genomic functions, but whether histones and cohesin cooperate in genome regulation is poorly understood. Here we identify Phf2, a member of the Jumonji-C family of histone demethylases, as a cohesin-interacting protein.
View Article and Find Full Text PDFMol Cell
December 2024
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. Electronic address:
How specific enhancer-promoter pairing is established remains mostly unclear. Besides the CTCF/cohesin machinery, few nuclear factors have been studied for a direct role in physically connecting regulatory elements. Using a murine erythroid cell model, we show via acute degradation experiments that LDB1 directly and broadly promotes connectivity among regulatory elements.
View Article and Find Full Text PDFCurr Opin Genet Dev
December 2024
Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA. Electronic address:
CCCTC-binding factor (CTCF) is a key regulator of 3D genome organization and transcriptional activity. Beyond its well-characterized role in facilitating cohesin-mediated loop extrusion, CTCF exhibits several cohesin-independent activities relevant to chromatin structure and various nuclear processes. These functions include patterning of nucleosome arrangement and chromatin accessibility through interactions with ATP-dependent chromatin remodelers.
View Article and Find Full Text PDFBiochem Soc Trans
December 2024
Chair of Biochemistry and Cell Biology, Biocenter, Julius-Maximilians-Universität of Würzburg, Wurzburg, Germany.
Structural maintenance of chromosomes (SMC) protein complexes, including cohesin, condensin, and the Smc5/6 complex, are integral to various processes in chromosome biology. Despite their distinct roles, these complexes share two key properties: the ability to extrude DNA into large loop structures and the capacity to alter the superhelicity of the DNA double helix. In this review, we explore the influence of eukaryotic SMC complexes on DNA topology, debate its potential physiological function, and discuss new structural insights that may explain how these complexes mediate changes in DNA topology.
View Article and Find Full Text PDFEMBO J
December 2024
DNA Motors Group, MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0HS, UK.
During mitosis, the condensin I and II complexes compact chromatin into chromosomes. Loss of the chromokinesin, KIF4A, results in reduced condensin I association with chromosomes, but the molecular mechanism behind this phenotype is unknown. In this study, we reveal that KIF4A binds directly to the human condensin I HAWK subunit, NCAPG, via a conserved disordered short linear motif (SLiM) located in its C-terminal tail.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!