The self-assembly of peptides and proteins into higher-ordered structures is encoded in the amino acid sequence of each peptide or protein. Understanding the relationship among the amino acid sequence, the assembly dynamics, and the structure of well-defined peptide oligomers expands the synthetic toolbox for these structures. Here, we present the X-ray crystallographic structure and solution behavior of de novo peptides that form antiparallel coiled-coil hexamers (ACC-Hex) by an interaction motif neither found in nature nor predicted by existing peptide design software. The 1.70 Å X-ray crystallographic structure of peptide 1a shows six α-helices associating in an antiparallel arrangement around a central axis comprising hydrophobic and aromatic residues. Size-exclusion chromatography studies suggest that peptides 1 form stable oligomers in solution, and circular dichroism experiments show that peptides 1 are stable to relatively high temperatures. Small-angle X-ray scattering studies of the solution behavior of peptide 1a indicate an equilibrium of dimers, hexamers, and larger aggregates in solution. The structures presented here represent a new motif of biomolecular self-assembly not previously observed for de novo peptides and suggest supramolecular design principles for material scaffolds based on coiled-coil motifs containing aromatic residues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.6b00201 | DOI Listing |
Dalton Trans
January 2025
Department of Inorganic Chemistry, Shahid Beheshti University, 1983969411, Tehran, Iran.
In a systematic study, six pseudopolymorphic coordination polymers containing the ditopic 1,3-di(pyridin-4-yl)urea ligand (4bpu) constructed with d metal cations, possessing the formula {[M(4bpu)I]S} [(M = Zn, Cd and Hg), (S = MeOH or EtOH)], namely Zn-MeOH, Zn-EtOH, Cd-MeOH, Cd-EtOH, Hg- and Hg-EtOH were obtained. The title compounds were characterized by single-crystal X-ray diffraction analysis (SC-XRD), elemental analysis (CHN), FT-IR spectroscopy, thermogravimetric analysis (TGA), and powder X-ray diffraction (PXRD). The diffraction studies show that these compounds are isostructural 1D zig-zag chain coordination polymers which is also confirmed using XPac 2.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4M1, Canada.
Dissolution of the potassium complex [K(ATe)(dme)] (1-Te) in THF, layering with hexanes, and cooling to -30 °C afforded X-ray quality crystals of [K(ATe)(THF)] (2-Te). The K-TeR distances in 2-Te are substantially shorter than those in 1-Te, and DFT and QTAIM calculations support the presence of K-TeR interactions, providing the first unambiguous examples of s-block-telluroether bonding. Attempts to prepare bulk quantities of 2-Te afforded [K(ATe)(THF)] (3-Te), and further drying yielded [K(ATe)(THF)] (4-Te) and [K(ATe)] (5-Te).
View Article and Find Full Text PDFProteins drive biochemical transformations by transitioning through distinct conformational states. Understanding these states is essential for modulating protein function. Although X-ray crystallography has enabled revolutionary advances in protein structure prediction by machine learning, this connection was made at the level of atomic models, not the underlying data.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
The deformation behavior and instabilities occurring during the drawing of high-density polyethylene (HDPE) were investigated using wide- and small-angle X-ray scattering (WAXS and SAXS) and scanning electron microscopy (SEM) in plain HDPE and paraffin wax- and/or chloroform-modified samples. In contrast to neat HDPE, the modified materials demonstrated strongly suppressed cavitation. However, regardless of cavitation, the tensile deformation of all samples was found to be governed by crystallographic mechanisms active in the crystalline lamellae, supported by shear in the amorphous layers, i.
View Article and Find Full Text PDFMolecules
January 2025
Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
Direct methods based on iterative projection algorithms can determine protein crystal structures directly from X-ray diffraction data without prior structural information. However, traditional direct methods often converge to local minima during electron density iteration, leading to reconstruction failure. Here, we present an enhanced direct method incorporating genetic algorithms for electron density modification in real space.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!