Human neutrophils have been known to release neutrophil extracellular traps (NETs), antimicrobial DNA structures capable of capturing and killing microbes. Recently, a similar phenomenon has been reported in macrophages infected with various pathogens. However, a role for macrophages extracellular traps (METs) in host defense responses against Mycobacterium massiliense (M. mass) has yet to be described. In this study, we show that M. mass, a rapid growing mycobacterium (RGM), also induces the release of METs from PMA-differentiated THP-1 cells. Intriguingly, this process is not dependent on NADPH oxidase activity, which regulates NET formation. Instead, M. mass-induced MET formation partially depends on calcium influx and requires phagocytosis of high bacterial load. The METs consist of a DNA backbone embedded with microbicidal proteins such as histone, MPO and elastase. Released METs entrap M. mass and prevent their dissemination, but do not have bactericidal activity. Instead, they result in enhanced bacterial growth. In this regard, METs were considered to provide interaction of M. mass with cells and an environment for bacterial aggregation, which may facilitate mycobacterial survival and growth. In conclusion, our results demonstrate METs as an innate defense response against M. mass infection, and suggest that extracellular traps play a multifaceted role in the interplay between host and bacteria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871462 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155685 | PLOS |
Biomaterials
January 2025
Department of Urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China. Electronic address:
High-dose radiation therapy is a widely used clinical strategy to inhibit tumor growth. However, the rapid generation of excessive reactive oxygen species (ROS) triggers the formation of neutrophil extracellular traps (NETs), which capture free tumor cells in the bloodstream, promoting metastasis. In this study, we developed a hybrid nanoparticle composed of DNase I and gold (DNase I@Au) to enhance radiotherapy efficacy while mitigating metastasis by precisely eliminating NETs.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China. Electronic address:
Liver resection represents a main curative treatment for patients with early-stage hepatocellular carcinoma (HCC), but there is a rather high incidence of postoperative HCC relapse, which severely shortens long-term survival time. Currently, no standard adjuvant strategies are available for preventing HCC relapse in clinical practice. Impaired natural killer (NK) cell anti-tumor immunity has been disclosed as a crucial root of HCC relapse, indicating that reinstating NK cell anti-tumor immunity may show promise to curb HCC relapse.
View Article and Find Full Text PDFF1000Res
January 2025
Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Udayana University, Denpasar, Bali, 80113, Indonesia.
Backgrounds: Venous Thromboembolism (VTE) is a disease entity comprising Deep Vein Thrombosis (DVT) and Pulmonary Embolism (PE). VTE events increase the mortality rate of patients with cancer receiving platinum-based chemotherapy. Soluble P-Selectin, Neutrophil Extracellular Traps (NET), and myeloperoxidase (MPO) are risk factors associated with DVT in malignancy patients receiving platinum-based chemotherapy.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2024
Yantai Yuhuangding Hospital, Shandong, China.
Background: The neutrophil-mediated generation of neutrophil extracellular traps (NETs) results in an augmented inflammatory response and cellular tissue injury during acute myocardial infarction (AMI). Through the analysis of public database information, we discovered and confirmed putative critical genes involved in NETs-mediated AMI.
Methods: The AMI dataset GSE66360 and the single-cell dataset GSE163465 were downloaded from the Gene Expression Omnibus database.
J Tradit Complement Med
January 2025
National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei City, 112026, Taiwan.
Amidst growing concerns over COVID-19 aftereffects like fatigue and cognitive issues, NRICM101, a traditional Chinese medicine, has shown promise. Used by over 2 million people globally, it notably reduces hospitalizations and intubations in COVID-19 patients. To explore whether NRICM101 could combat COVID-19 brain fog, we tested NRICM101 on hACE2 transgenic mice administered the S1 protein of SARS-CoV-2, aiming to mitigate S1-induced cognitive issues by measuring animal behaviors, immunohistochemistry (IHC) staining, and next-generation sequencing (NGS) analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!