Bile formation by the liver is largely dependent on the transport of bile acids by hepatocytes. This process is thought to result from Na-coupled uptake of bile acids into the cell and voltage-dependent, carrier-mediated transport from cell to canaliculus. However, the dependence of bile secretion on membrane potential has not yet been observed. In this study, the effect of changes in membrane potential differences on bile secretion was tested by impaling rat hepatocyte couplets with microelectrodes, changing membrane potential by intracellular current injection, and measuring fluid secretion by optically determining canalicular size. In the presence of 50 microM taurocholate, membrane potential was -33.3 +/- 5.8 mV and canalicular area increased by 6 +/- 6%/min, corresponding to a fluid secretion rate of 2-4 fl/min. In contrast, when intracellular voltage was suddenly changed to -109.9 +/- 15.0 mV, the canalicular area increased by 20 +/- 4%/min, corresponding to a secretion rate of 19 fl/min. When these experiments were repeated in the absence of taurocholate, the negative clamp had no effect on canalicular size. Taurocholate itself did not alter membrane potential. These findings support the hypothesis that canalicular bile secretion depends on a process equivalent to electrodiffusion. We therefore conclude that membrane voltage is a driving force for taurocholate-dependent fluid secretion by the liver.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpgi.1989.256.5.G826 | DOI Listing |
Nanotechnology
January 2025
University of Arkansas, Fayetteville, AR, Fayetteville, Arkansas, 72701-4002, UNITED STATES.
Over the past few decades, significant efforts have been dedicated to advancing technologies for the removal of micropollutants from water. Achieving complete pure water with a single treatment process is challenging and nearly impossible. One promising approach among various alternatives is adopting hybrid technology, which is considered as a win-win technology.
View Article and Find Full Text PDFJ Leukoc Biol
January 2025
Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA.
Regulated sequential exocytosis of neutrophil granules is essential in orchestrating the innate immune response, while uncontrolled secretion causes inflammation. We developed and characterized Nexinhib20, a small-molecule inhibitor that targets azurophilic granule exocytosis in neutrophils by blocking the interaction between the small GTPase Rab27a and its effector JFC1. Its therapeutic potential has been demonstrated in several pre-clinical models of inflammatory disease.
View Article and Find Full Text PDFScience
January 2025
Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.
The mechanisms by which the brain replays neural activity sequences remain unknown. Recording from large ensembles of hippocampal place cells in freely behaving rats, we observed that replay content is strictly organized over multiple timescales and governed by self-avoidance. After movement cessation, replays avoided the animal's previous path for 3 seconds.
View Article and Find Full Text PDFPLoS One
January 2025
Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China.
DNA methylation is known to be associated with cataracts. In this study, we used a mouse model and performed DNA methylation and transcriptome sequencing analyses to find epigenetic indicators for age-related cataracts (ARC). Anterior lens capsule membrane tissues from young and aged mice were analyzed by MethylRAD-seq to detect the genome-wide methylation of extracted DNA.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
Aflatoxin B1 (AFB1) is a class 1 carcinogen and mycotoxin known to contribute to the development of hepatocellular carcinoma (HCC), growth impairment, altered immune system modulation, and malnutrition. AFB1 is synthesized by Aspergillus flavus and is known to widely contaminate foodstuffs, particularly maize, wheat, and groundnuts. The mechanism in which AFB1 causes genetic mutations has been well studied, however its metabolomic effects remained largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!