Macrophage migration inhibitory factor, a role in COPD.

Am J Physiol Lung Cell Mol Physiol

Department of Thoracic Medicine, Haukeland University Hospital, Bergen Norway; Department of Clinical Science, University of Bergen, Bergen, Norway;

Published: July 2016

Macrophage migration inhibitor factor (MIF) is a pluripotent cytokine associated with several different inflammatory conditions, but its role within lung inflammation and chronic obstructive pulmonary disease (COPD) is unclear. This study aimed to examine MIF in both stable COPD and during acute exacerbations (AECOPD). The study included 433 patients with COPD aged 41-76 and 325 individuals from the Bergen COPD cohort study who served as controls. All patients had an FEV1 of <80% predicted, FEV1/FVC ratio of <0.7, and a smoking history >10 pack-years. Serum levels of MIF were compared between the two groups at baseline, and for 149 patients, measurements were also carried out during AECOPD. Linear regression models were fitted with MIF as the outcome variable and adjusted for sex, age, body composition, smoking, and Charlson Comorbidity Score (CCS). Median MIF (interquartile range) in patients with COPD was 20.1 ng/ml (13.5-30.9) compared with 14.9 ng/ml (11.1-21.6) in controls (P < 0.01). MIF was bivariately associated with sex, body composition, and CCS (P < 0.05 for all). In the regression analyses, MIF was significantly higher in patients with COPD, coefficient 1.32 (P < 0.01) and 1.30 (P < 0.01) unadjusted and adjusted, respectively. In addition, in 149 patients during episodes of AECOPD, MIF was significantly elevated, with a median of 23.2 ng/ml (14.1-42.3) compared with measurements at stable disease of 19.3 ng/ml (12.4-31.3, P < 0.01). Serum levels of MIF were significantly higher in patients with COPD compared with controls. We also identified an additional increase in MIF levels during episodes of AECOPD.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00461.2015DOI Listing

Publication Analysis

Top Keywords

macrophage migration
8
copd
5
migration inhibitory
4
inhibitory factor
4
factor role
4
role copd
4
copd macrophage
4
migration inhibitor
4
inhibitor factor
4
factor mif
4

Similar Publications

The Emerging Role of Pleural Macrophages in Influenza Defense.

DNA Cell Biol

January 2025

Department of Microbiology, University of California Riverside, Riverside, California, USA.

The pleural cavity is gaining recognition as an important player in lung infections. Our recent research revealed that pleural macrophages (PMs) migrate from the pleural cavity into the lung during influenza virus infection, contributing to improved disease outcomes. This summary highlights key findings on the role of PMs in influencing viral lung infection outcomes and explores the potential directions for advancing this emerging field of study.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by the production of autoantibodies and damage to multiple organs. Glomerulonephritis, a manifestation involving glomerular deposition of immune complexes and complement components, significantly contributes to disease morbidity. Although the endosomal single-stranded RNA sensor TLR7 is known to drive glomerulonephritis by promoting autoantibody production in B cells, the contribution of macrophage TLR7 responses to glomerulonephritis remains poorly understood.

View Article and Find Full Text PDF

Background: Metastasis is the leading cause of breast cancer (BC) death, and tumor cells must migrate and invade to metastasize. BC cells that express the pro-metastatic actin regulatory protein MenaINV have an enhanced ability to migrate and intravasate within the primary tumor and extravasate at secondary sites. Though chemotherapy improves patient survival, treatment with paclitaxel leads to upregulation of MenaINV and an increase in metastasis in mice.

View Article and Find Full Text PDF

Obesity-associated inflammation is characterized by macrophage infiltration into peripheral tissues, contributing to the progression of prediabetes and type 2 diabetes (T2D). The enzyme 12-lipoxygenase (12-LOX) catalyzes the formation of pro-inflammatory eicosanoids and is known to promote the migration of macrophages, yet its role in obesity-associated inflammation remains incompletely understood. Furthermore, differences between mouse and human orthologs of 12-LOX have limited efforts to study existing pharmacologic inhibitors of 12-LOX.

View Article and Find Full Text PDF

Background: Bladder cancer (BCa) is one of the most common malignancies worldwide, and its prognostication and treatment remains challenging. The fast growth of various cancer cells requires reprogramming of its energy metabolism using aerobic glycolysis as a major energy source. However, the prognostic and therapeutic value of glycolysis-related genes in BCa remains to be determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!