Transforming growth factor beta (TGFβ) signalling is critical for regulatory T cell development and function, and regulatory T cell dysregulation is a common observation in autoimmune diseases, including multiple sclerosis. In a comprehensive miRNA profiling study of patients with multiple sclerosis naïve CD4 T cells, 19 differentially expressed miRNAs predicted to target the TGFβ signalling pathway were identified, leading to the hypothesis that miRNAs may be responsible for the regulatory T cell defect observed in patients with multiple sclerosis. Patients with multiple sclerosis had reduced levels of TGFβ signalling components in their naïve CD4 T cells. The differentially expressed miRNAs negatively regulated the TGFβ pathway, resulting in a reduced capacity of naïve CD4 T cells to differentiate into regulatory T cells. Interestingly, the limited number of regulatory T cells, that did develop when these TGFβ-targeting miRNAs were overexpressed, were capable of suppressing effector T cells. As it has previously been demonstrated that compromising TGFβ signalling results in a reduced regulatory T cell repertoire insufficient to control autoimmunity, and patients with multiple sclerosis have a reduced regulatory T cell repertoire, these data indicate that the elevated expression of multiple TGFβ-targeting miRNAs in naïve CD4 T cells of patients with multiple sclerosis impairs TGFβ signalling, and dampens regulatory T cell development, thereby enhancing susceptibility to developing multiple sclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892757 | PMC |
http://dx.doi.org/10.1093/brain/aww084 | DOI Listing |
Immunology
January 2025
Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China.
Platelets and neutrophils are among the most abundant cell types in peripheral blood. Beyond their traditional roles in thrombosis and haemostasis, they also play an active role in modulating immune responses. Current knowledge on the role of platelet-neutrophil interactions in the immune system has been rapidly expanding.
View Article and Find Full Text PDFAnn Neurol
January 2025
Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Objective: The aim of this study was to explore the microstructural dynamics of the subventricular zone (SVZ) with aging and their associations with clinical disability and brain structural damage in pediatric-onset multiple sclerosis (MS) patients.
Methods: One-hundred and forty-one pediatric-onset MS patients (67 pediatric and 74 adults with pediatric-onset) and 233 healthy controls (HC) underwent neurological and 3.0 T MRI assessment.
Mult Scler
January 2025
Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
Background: Spinal cord (SC) atrophy is a key imaging biomarker of progressive multiple sclerosis (MS). Progressive MS is more common in men and postmenopausal women.
Objective: Investigate the impact of sex and menopause on SC measurements in persons with MS (pwMS).
FEBS Open Bio
January 2025
Sunny BioDiscovery Inc., Santa Paula, CA, USA.
Dimethyl fumarate (DMF) is an anti-inflammatory and immunoregulatory medication used to treat multiple sclerosis (MS) and psoriasis. Its skin sensitization property precludes its topical use, which is unfortunate for the treatment of psoriasis. Isosorbide di-(methyl fumarate) (IDMF), a novel derivative of DMF, was synthesized to circumvent this adverse reaction and unlock the potential of topical delivery, which could be useful for treating psoriasis in the subpopulation of psoriatic MS patients, as well as in the general population.
View Article and Find Full Text PDFHum Genomics
January 2025
Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Richards Building B304, 3700 Hamilton Walk, Philadelphia, PA, 19104, USA.
Background: Disease comorbidities and longer-term complications, arising from biologically related associations across phenotypes, can lead to increased risk of severe health outcomes. Given that many diseases exhibit sex-specific differences in their genetics, our objective was to determine whether genotype-by-sex (GxS) interactions similarly influence cross-phenotype associations. Through comparison of sex-stratified disease-disease networks (DDNs)-where nodes represent diseases and edges represent their relationships-we investigate sex differences in patterns of polygenicity and pleiotropy between diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!