Considerable research is being conducted in searching for effective anode catalysts in alkaline direct methanol fuel cells (DMFCs). Although significant progress has been achieved, it is still challenging to prepare non-Pt catalysts with both excellent activity and good durability. Herein, a highly porous NiO film is developed by a facile and fast anodization approach. The anodic NiO film demonstrates a high surface area, large mesopore volume and small crystallite size, leading to facilitated adsorption of reaction species, easy electrolyte penetration and fast reaction kinetics. Furthermore, as anodic NiO is grown in situ on a metallic substrate with strong adhesion strength and good electrical contact, it can be used directly as an anode catalyst for methanol oxidation without the need to add any binder or conducting agent. Such an additive-free approach greatly expedites the catalyst preparation process. The anodic NiO shows lower methanol oxidation potential, higher oxidation current and better catalytic durability than most of the state-of-the-art Ni-based catalysts reported elsewhere. As anodization is a simple, low cost and easily scaled up method, the work described here provides an exciting direction to speed up the practical application of alkaline DMFCs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6nr01991aDOI Listing

Publication Analysis

Top Keywords

nio film
12
methanol oxidation
12
anodic nio
12
highly porous
8
porous nio
8
nio
5
facile synthesis
4
synthesis mechanically
4
mechanically robust
4
robust highly
4

Similar Publications

Interface Engineering and Modulation of Nickel Oxide for High Air-Stable p-Type Crystalline Silicon Solar Cells.

Small

January 2025

Anhui Soltrend New Energy Technology Co., Ltd, Lujiang County, Hefei, 230000, China.

Dopant-free passivating contact crystalline silicon solar cells hold the potential of higher efficiency and cost down. In the hole-transport terminal, one still faces the challenge of trade-off between efficiency and stability. In this work, a H-AlO/NiO/Ni stacked hole-transport layer is proposed, where the H-AlO standing for H-rich AlO film can effectively reduce the interfacial defects and the high work function Ni metal results in a low contact resistance of 47.

View Article and Find Full Text PDF

NiO nanoparticles (NPs) synthesized using glancing angle deposition (GLAD) technique over MgZnO thin film was used to design a novel memory device. The NiO NPs with average diameter ~ 9.5 nm was uniformly distributed over the MgZnO thin film surface.

View Article and Find Full Text PDF

Oriented Molecular Dipole-Enabled Modulation of NiO/Perovskite Interface for Pb-Sn Mixed Inorganic Perovskite Solar Cells.

Adv Mater

January 2025

Department of Materials Science and Engineering, Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China.

Nickel oxide (NiO) is considered as a potential hole transport material in the fabrication of lead-tin (Pb-Sn) perovskite solar cells (PSCs) for tandem applications. However, the energy level mismatch and unfavorable redox reactions between Ni species and Sn at the NiO/perovskite interface pose challenges. Herein, high-performance Pb-Sn-based inorganic PSCs are demonstrated by modulating the NiO/perovskite interface with a multifunctional 4-aminobenzenesulfonic acid (4-ABSA) interlayer.

View Article and Find Full Text PDF

Towards all inorganic antimony sulphide semitransparent solar cells.

Sci Rep

January 2025

Laboratory for Thin Film Energy Materials, Department of Materials and Environmental Technology, School of Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia.

NiO, a wide band gap hole-transporting material (HTM), is gaining attention in photovoltaics due to its optical transparency, chemical stability, and favourable band alignment with absorber. This study uses NiO nanoparticle-based HTM in semi-transparent SbS solar cells via a simple chemical precipitation method. We optimised NiO layer by varying precursor solution concentration and studied its impact on optical and structural properties, composition of nanoparticles and subsequent effect on the performance of semi-transparent SbS solar cell.

View Article and Find Full Text PDF

An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!