AI Article Synopsis

  • TRPA1 activation mediates peripheral vasodilatation, and this study investigates its mechanisms using cinnamaldehyde in mice.
  • Topical application of cinnamaldehyde increased ear blood flow in wild-type mice but not in TRPA1 knockout mice, indicating the necessity of TRPA1 for this response.
  • The study suggests that neuronal nitric oxide synthase (nNOS) and reactive oxygen nitrogen species (RONS) play crucial roles in TRPA1-mediated vasodilatation, revealing a novel function of peroxynitrite in this process.

Article Abstract

Background And Purpose: Transient receptor potential ankyrin-1 (TRPA1) activation is known to mediate neurogenic vasodilatation. We investigated the mechanisms involved in TRPA1-mediated peripheral vasodilatation in vivo using the TRPA1 agonist cinnamaldehyde.

Experimental Approach: Changes in vascular ear blood flow were measured in anaesthetized mice using laser Doppler flowmetry.

Key Results: Topical application of cinnamaldehyde to the mouse ear caused a significant increase in blood flow in the skin of anaesthetized wild-type (WT) mice but not in TRPA1 knockout (KO) mice. Cinnamaldehyde-induced vasodilatation was inhibited by the pharmacological blockade of the potent microvascular vasodilator neuropeptide CGRP and neuronal NOS-derived NO pathways. Cinnamaldehyde-mediated vasodilatation was significantly reduced by treatment with reactive oxygen nitrogen species (RONS) scavenger such as catalase and the SOD mimetic TEMPOL, supporting a role of RONS in the downstream vasodilator TRPA1-mediated response. Co-treatment with a non-selective NOS inhibitor L-NAME and antioxidant apocynin further inhibited the TRPA1-mediated vasodilatation. Cinnamaldehyde treatment induced the generation of peroxynitrite that was blocked by the peroxynitrite scavenger FeTPPS and shown to be dependent on TRPA1, as reflected by an increase in protein tyrosine nitration in the skin of WT, but not in TRPA1 KO mice.

Conclusion And Implications: This study provides in vivo evidence that TRPA1-induced vasodilatation mediated by cinnamaldehyde requires neuronal NOS-derived NO, in addition to the traditional neuropeptide component. A novel role of peroxynitrite is revealed, which is generated downstream of TRPA1 activation by cinnamaldehyde. This mechanistic pathway underlying TRPA1-mediated vasodilatation may be important in understanding the role of TRPA1 in pathophysiological situations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945766PMC
http://dx.doi.org/10.1111/bph.13519DOI Listing

Publication Analysis

Top Keywords

trpa1 activation
12
trpa1
8
vasodilatation
8
neurogenic vasodilatation
8
reactive oxygen
8
oxygen nitrogen
8
nitrogen species
8
blood flow
8
neuronal nos-derived
8
trpa1-mediated vasodilatation
8

Similar Publications

From pain to meningitis: bacteria hijack nociceptors to promote meningitis.

Front Immunol

January 2025

National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China.

Bacterial meningitis is a severe and life-threatening infection of the central nervous system (CNS), primarily caused by and . This condition carries a high risk of mortality and severe neurological sequelae, such as cognitive impairment and epilepsy. Pain, a central feature of meningitis, results from the activation of nociceptor sensory neurons by inflammatory mediators or bacterial toxins.

View Article and Find Full Text PDF

NLRP3 deficiency aggravated DNFB-induced chronic itch by enhancing type 2 immunity IL-4/TSLP-TRPA1 axis in mice.

Front Immunol

January 2025

Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Background: The nod-like receptor family pyrin domain-containing 3 (NLRP3) has been implicated in various skin diseases. However, its role in mediating 2, 4-dinitrofluorobenzene (DNFB)-induced chronic itch remains unclear.

Methods: Widetype () and deletion ( )mice, the expression of transient receptor potential (TRP) ankyrin 1 (TRPA1) inhibitor or recombinant mice interleukin-18 (IL-18) were used to establish and evaluate the severity of DNFB-mediated chronic itch.

View Article and Find Full Text PDF

Mechanisms of Low Temperature-Induced Growth Hormone Resistance via TRPA1 Channel Activation in Male Nile Tilapia.

Endocrinology

January 2025

Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, 610065, Sichuan University, Chengdu, P.R. China.

Low temperatures significantly impact growth in ectothermic vertebrates, though the underlying mechanisms remain poorly understood. This study investigates the role of transient receptor potential ankyrin 1 (TRPA1) channels in mediating low temperature effects on growth performance and growth hormone (GH) resistance in Nile tilapia (Oreochromis niloticus). Prolonged exposure to low temperature (16°C for 35 days) impaired growth performance and induced GH resistance, characterized by elevated serum GH levels and decreased insulin-like growth factor-1 (IGF-1) levels.

View Article and Find Full Text PDF

Potential Effect of Cinnamaldehyde on Insulin Resistance Is Mediated by Glucose and Lipid Homeostasis.

Nutrients

January 2025

Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.

Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.

View Article and Find Full Text PDF

Enhancing Photodynamic Therapy Efficacy via Photo-Triggered Calcium Overload and Oxygen Delivery in Tumor Hypoxia Management.

ACS Appl Mater Interfaces

January 2025

Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400010, China.

: Photodynamic therapy (PDT) has emerged as a promising treatment for cancer, primarily due to its ability to generate reactive oxygen species (ROS) that directly induce tumor cell death. However, the hypoxic microenvironment commonly found within tumors poses a significant challenge by inhibiting ROS production. This study aims to investigate the effect of improving tumor hypoxia on enhancing PDT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!