Diabetes mellitus (DM) determines a wide array of severe clinical complications including gastrointestinal motility disorders. The present study investigates the effects of spontaneous DM on the intramural innervation and in particular on nitrergic neurons of the myenteric plexus (MP) of the canine gastric antrum and ileum. Specimens of antrum and ileum from eight control-dogs and five insulin-dependent DM-dogs were collected. MP neurons were immunohistochemically identified with the anti-HuC/HuD antibody, while nitrergic neurons were identified with the antibody anti-neuronal nitric oxide synthase (nNOS). The density of HuC/HuD-immunoreactive (IR) neurons was determined and the nitrergic neurons were quantified as a relative percentage, in consideration of the total number of HuC/HuD-IR neurons. Furthermore, the density of nitrergic fibers in the muscular layers was calculated. Data were expressed as mean±standard deviation. Compared to control-dogs, no significant differences resulted in the density of HuC/HuD-IR neurons in the antrum and ileum of DM-dogs; however, HuC/HuD-immunolabeling showed nuclear localization and fragmentation in DM-dogs. In the stomachs of control- and DM-dogs, the percentages of nitrergic neurons were 30±6% and 25±2%, respectively (P=0.112). In the ileum of the control-dogs, the percentage of nitrergic neurons was 29±5%, while in the DM-dogs, it was significantly reduced 19±5% (P=0.006). The density of nNOS-IR nervous fibers was meaningful reduced in either the tracts considered. Notably, the ganglia of DM-dogs showed also a thickening of the periganglionic connective tissue. These findings indicate that DM in dogs induce modification of the myenteric neurons and, in particular, of the nitrergic neuronal subpopulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.autneu.2016.04.004DOI Listing

Publication Analysis

Top Keywords

nitrergic neurons
24
antrum ileum
16
neurons
11
neurons myenteric
8
myenteric plexus
8
gastric antrum
8
ileum control-dogs
8
huc/hud-ir neurons
8
nitrergic
7
dm-dogs
6

Similar Publications

Regulation of neural stem cells by innervating neurons.

J Neurochem

January 2025

Neurosciences and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.

The adult central nervous system (CNS) hosts several niches, in which the neural stem and precursor cells (NPCs) reside. The subventricular zone (SVZ) lines the lateral brain ventricles and the subgranular zone (SGZ) is located in the dentate gyrus of the hippocampus. SVZ and SGZ NPCs replace neurons and glia in the homeostatic as well as diseased or injured states.

View Article and Find Full Text PDF

Unlabelled: The enteric nervous system (ENS) continues to be exposed to various disturbances throughout life, which causes apoptosis in the ENS. Therefore, it is assumed that neurogenesis is induced to maintain the neuronal network in the adult ENS. However, these underlying mechanisms are largely unknown.

View Article and Find Full Text PDF

The peristaltic reflex has been a central concept in gastrointestinal motility; however, evidence was published recently suggesting that post-stimulus responses that follow inhibitory neural responses provide the main propulsive force in colonic motility. This new concept was based on experiments on proximal colon where enteric inhibitory neural inputs are mainly nitrergic. However, the nature of inhibitory neural inputs changes from proximal to distal colon where purinergic inhibitory regulation dominates.

View Article and Find Full Text PDF

Objectives: Circadian rhythm disruption (CRD) is implicated with numerous gastrointestinal motility diseases, with the enteric nervous system (ENS) taking main responsibility for the coordination of gastrointestinal motility. The purpose of this study is to explore the role of circadian rhythms in ENS remodeling and to further elucidate the underlying mechanisms.

Methods: First, we established a jet-lagged mice model by advancing the light/dark phase shift by six hours every three days for eight weeks.

View Article and Find Full Text PDF

Intestinal Motility Dysfunction in Goto-Kakizaki Rats: Role of the Myenteric Plexus.

Cells

September 2024

Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil.

Unlabelled: Diabetes mellitus is associated with changes in intestinal morphology and the enteric nervous system. We previously reported constipation in Goto-Kakizaki (GK) rats, a non-obese model for type 2 diabetes mellitus.

Aim: The morpho-quantitative analysis of myenteric plexus neurons in the small and large intestines of 120-day-old male GK rats was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!