Enough positive rate of paraspinal mapping and diffusion tensor imaging with levels which should be decompressed in lumbar spinal stenosis.

J Orthop Sci

Departments of Orthopaedic, First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiang Road, Guangzhou 510120, People's Republic of China; Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiang Road, Guangzhou 510120, People's Republic of China. Electronic address:

Published: July 2016

AI Article Synopsis

  • Lumbar spinal stenosis diagnosis can be misleading with conventional MRI, so new methods like paraspinal mapping (PM) and diffusion tensor imaging (DTI) may provide more reliable identification of decompression levels.
  • A study involving 96 patients showed that DTI had a 100% positive identification rate for decompression levels, and both DTI and PM led to significant improvements in pain and disability scores post-surgery.
  • The findings suggest that using DTI and PM can effectively determine which levels need decompression, reducing the risk of overlooking critical areas in patients with degenerative lumbar spinal stenosis.

Article Abstract

Introduction: In lumbar spinal stenosis, correlating symptoms and physical examination findings with decompression levels based on common imaging is not reliable. Paraspinal mapping (PM) and diffusion tensor imaging (DTI) may be possible to prevent the false positive occurrences with MRI and show clear benefits to reduce the decompression levels of lumbar spinal stenosis than conventional magnetic resonance imaging (MRI) + neurogenic examination (NE). However, they must have enough positive rate with levels which should be decompressed at first. The study aimed to confirm that the positive of DTI and PM is enough in levels which should be decompressed in lumbar spinal stenosis.

Materials And Methods: The study analyzed the positive of DTI and PM as well as compared the preoperation scores to the postoperation scores, which were assessed preoperatively and at 2 weeks, 3 months 6 months, and 12 months postoperatively.

Results: 96 patients underwent the single level decompression surgery. The positive rate among PM, DTI, and (PM or DTI) was 76%, 98%, 100%, respectively. All post-operative Oswestry Disability Index (ODI), visual analog scale for back pain (VAS-BP) and visual analog scale for leg pain (VAS-LP) scores at 2 weeks postoperatively were measured improvement than the preoperative ODI, VAS-BP and VAS-LP scores with statistically significance (p-value = 0.000, p-value = 0.000, p-value = 0.000, respectively).

Conclusions: In degenetive lumbar spinal stenosis, the positive rate of (DTI or PM) is enough in levels which should be decompressed, thence using the PM and DTI to determine decompression levels will not miss the level which should be operated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jos.2016.04.008DOI Listing

Publication Analysis

Top Keywords

lumbar spinal
20
positive rate
16
levels decompressed
16
spinal stenosis
16
decompression levels
12
paraspinal mapping
8
mapping diffusion
8
diffusion tensor
8
tensor imaging
8
decompressed lumbar
8

Similar Publications

Objective: To investigate the predictive ability of the MRI-based vertebral bone quality (VBQ) score for pedicle screw loosening following instrumented transforaminal lumbar interbody fusion (TLIF).

Methods: Data from patients who have received one or two-level instrumented TLIF from February 2014 to March 2015 were retrospectively collected. Pedicle screw loosening was diagnosed when the radiolucent zone around the screw exceeded 1 mm in plain radiographs.

View Article and Find Full Text PDF

While the importance of the upper and lower limbs in locomotion is well understood, the kinematics of the trunk during walking remains largely unexplored. Two decades ago, a casual observation was reported indicating spine lengthening in a small sample of mostly children during walking, but this observation was never replicated. Objectives: This study aims to verify the preliminary observation that spine lengthening occurs during walking and to explore changes in spine kinematics across three different age groups.

View Article and Find Full Text PDF

CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion.

View Article and Find Full Text PDF

Objective: Combining oblique lumbar interbody fusion (OLIF) with posterior pedicle screw fixation (PPSF) has been proposed to reduce cage subsidence, especially in osteoporotic spines. Recently, anterolateral screw-rod fixation has gained interest as it allows direct pathology observation and avoids a posterior approach. However, controversies exist between anterolateral screw fixation systems and traditional PPSF due to variations in osteoporotic vertebral mineral density, screw fixation positions, and fixation methods (bicortical vs.

View Article and Find Full Text PDF

Objective: The postoperative recovery of patients with lumbar disc herniation (LDH) requires further study. This study aimed to establish and validate a predictive model for functional recovery in patients with LDH and explore associated risk factors.

Method: Patients with LDH undergoing PLIF admitted from January 1, 2018 to December 31, 2022 were included, and patient data were prospectively collected through follow-up.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!