Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4870499 | PMC |
http://dx.doi.org/10.1038/srep25965 | DOI Listing |
Best Pract Res Clin Endocrinol Metab
January 2025
Department of Endocrinology, Seth G.S. Medical College and King Edward Memorial Hospital, Mumbai, India. Electronic address:
Adolescent primary hyperparathyroidism (PHPT) is a rare endocrine disorder bearing distinctions from the adult form. This review examines its unique aspects, focusing on clinical presentation, genetic etiologies, genotype-phenotype correlations, and therapeutic management. Adolescent PHPT often has a genetic basis, whether familial, syndromic, or apparently sporadic, and identifying the underlying genetic cause is important for patient care.
View Article and Find Full Text PDFPLoS One
December 2024
Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, China.
The existing landslide monitoring methods are unable to accurately reflect the true deformation of the landslide body, and the use of a single SAR satellite, affected by its revisit cycle, still suffers from the limitation of insufficient temporal resolution for landslide monitoring. Therefore, this paper proposes a method for the dynamic reconstruction and evolutionary characteristic analysis of the Gaojiawan landslide's along-slope deformation based on ascending and descending orbit time-series InSAR observations using Kalman filtering. Initially, the method employs a gridded selection approach during the InSAR time-series processing, filtering coherent points based on the standard deviation of residual phases, thereby ensuring the density and quality of the extracted coherent points.
View Article and Find Full Text PDFComput Biol Med
December 2024
Griffith Center of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Australia; School of Medicine and Dentistry, Griffith University, Australia; Department of Orthopaedics, Children's Health Queensland Hospital and Health Service, Australia. Electronic address:
Background And Objective: Proximal femoral osteotomy (PFO) is a surgical intervention, typically performed on paediatric population, that aims to correct femoral deformities caused by different pathologies (e.g., slipped capital femoral epiphysis).
View Article and Find Full Text PDFSmall
November 2024
Delft University of Technology, Delft, 2628 CD, The Netherlands.
Synchronization plays a crucial role in the dynamics of living organisms. Uncovering the mechanism behind it requires an understanding of individual biological oscillators and the coupling forces between them. Here, a single-cell assay is developed that studies rhythmic behavior in the motility of E.
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
October 2024
School of Health Sciences, Cleveland State University, Cleveland, Ohio, USA.
Quadrupedal animals traveling on arboreal supports change aspects of locomotion to avoid slipping and falls. This study compares locomotor biomechanics in two small mammals: first, the gray short-tailed opossum (Monodelphis domestica) predominantly trots, which is a symmetrical gait. The second species, the Siberian chipmunk (Tamias sibiricus), primarily bounds or half-bounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!