Tunable diode laser absorption spectroscopy (TDLAS) is an excellent analytical technique for gas sensing applications. In situ sensing of relevant hydrocarbon gases is of substantial interest for a variety of in-field scenarios including environmental monitoring and process analysis, ideally providing accurate, molecule specific, and rapid information with minimal sampling requirements. Substrate-integrated hollow waveguides (iHWGs) have demonstrated superior properties for gas sensing applications owing to minimal sample volumes required while simultaneously serving as efficient photon conduits. Interband cascade lasers (ICLs) are recently emerging as mid-infrared light sources operating at room temperature, with low power consumption, and providing excellent potential for integration. Thereby, portable and handheld mid-infrared sensing devices are facilitated. Methane (CH4) is among the most frequently occurring, and thus, highly relevant hydrocarbons requiring in situ emission monitoring by taking advantage of its distinct molecular absorption around 3 μm. Here, an efficient combination of iHWGs with ICLs is presented providing a methane sensor calibrated in the range of 100 to 2000 ppmv with a limit of detection at 38 ppmv at the current stage of development. Furthermore, a measurement precision of 0.62 ppbv during only 1 s of averaging time has been demonstrated, thereby rendering this sensor concept useful for in-line and on-site emission monitoring and process control applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6an00679eDOI Listing

Publication Analysis

Top Keywords

interband cascade
8
cascade lasers
8
substrate-integrated hollow
8
hollow waveguides
8
gas sensing
8
sensing applications
8
monitoring process
8
emission monitoring
8
sensing
5
sensing hydrocarbons
4

Similar Publications

A compact and portable gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) for the detection of methane (C1), ethane (C2), and propane (C3) in natural gas (NG)-like mixtures is reported. An interband cascade laser (ICL) emitting at 3367 nm is employed to target absorption features of the three alkanes, and partial least-squares regression analysis is employed to filter out spectral interferences and matrix effects characterizing the examined gas mixtures. Spectra of methane, ethane, and propane mixtures diluted in nitrogen are employed to train and test the regression algorithm, achieving a prediction accuracy of ∼98%, ∼96%, and ∼93% on C1, C2, and C3, respectively.

View Article and Find Full Text PDF

Quantum cascade lasers (QCLs) and interband cascade lasers (ICLs) are widely used as light sources in tunable laser absorption spectroscopy because they emit in the mid-infrared region where many strong and characteristic absorption bands are present. In this paper, we compare the performance of these lasers emitting at about 2310.1 cm to determine an optimal light source for detecting isotopic ratios of carbon dioxide (CO).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed an interband cascade laser (ICL) array that uses multimode interference (MMI) couplers to synchronize multiple laser emitters for better heat management and performance in the mid-infrared range (3-4 µm).
  • The design includes a wide ridge structure for improved light propagation and ensures coherent operation, as confirmed by distinct far-field patterns with interference fringes.
  • Experimental results show the array can achieve high output power (up to 390 mW) with excellent beam quality, indicating its potential for scalable high-power applications.
View Article and Find Full Text PDF

The long-wave infrared (LWIR) interband cascade detector with type-II superlattices (T2SLs) and a gallium-free ("Ga-free") InAs/InAsSb (x = 0.39) absorber was characterized by photoluminescence (PL) and spectral response (SR) methods. Heterostructures were grown by molecular beam epitaxy (MBE) on a GaAs substrate (001) orientation.

View Article and Find Full Text PDF

Quartz Enhanced Photoacoustic Spectroscopy on Solid Samples.

Sensors (Basel)

June 2024

Heinrich Blasius Institute of Physical Technologies, Hamburg University of Applied Sciences, 20999 Hamburg, Germany.

Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) is a technique in which the sound wave is detected by a quartz tuning fork (QTF). It enables particularly high specificity with respect to the excitation frequency and is well known for an extraordinarily sensitive analysis of gaseous samples. We have developed the first photoacoustic (PA) cell for QEPAS on solid samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!