Alkylating agents are a significant class of environmental carcinogens as well as commonly used anticancer therapeutics. Traditional alkylating activity assays have utilized the colorimetric reagent 4-(4-nitrobenzyl)pyridine (4NBP). However, 4NBP based assays have a relatively low sensitivity towards harder, more oxophilic alkylating species and are not well suited for the identification of the trapped alkyl moiety due to adduct instability. Herein we describe a method using water as the trapping agent which permits the trapping of simple alkylating electrophiles with a comparatively wide range of softness/hardness and permits the identification of donated simple alkyl moieties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4955734 | PMC |
http://dx.doi.org/10.1016/j.ab.2016.04.020 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Nanjing University, Chemistry, Xianlin 163Hao, Nanjing 210023, 210023, Nanjing, CHINA.
The simple and efficient conversion of carboxylic acids into structurally diverse organic molecules is highly desirable in chemical synthesis. This review covers recent developments in photocatalytic methodology for late-stage transformations of complex carboxylic acids and their derivatives enabled by radical decarboxylation and deoxygenation, highlighting some representative and significant contributions in this field. These advancements are categorized based on the reactivity patterns exhibited by the carboxylic acids.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Laboratory of Analytical Biochemistry & Metabolomics, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
A simple analytical workflow is described for gas chromatographic-mass spectrometric (GC-MS)-based chiral profiling of secondary amino acids (AAs) in biological matrices. The sample preparation is carried out directly in aqueous biological sample extracts and involves in situ heptafluorobutyl chloroformate (HFBCF) derivatization-liquid-liquid microextraction of nonpolar products into hexane phase followed by subsequent formation of the corresponding methylamides from the HFB esters by direct treatment with methylamine reagent solution. The (O, N) HFB-butoxycarbonyl-methylamide AA products (HFBOC-MA) are separated on a Chirasil-L-Val capillary column and quantitatively measured by GC-MS operated in selected ion monitoring (SIM) mode.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Conjugated polymer donors have always been one of the important components of organic solar cells (OSCs), particularly those featuring simple synthetic routes, proper energy levels, and appropriate aggregation behavior. In this work, we employed a nonfused electron-deficient building block, dicyanobithiophene (2CT), for constructing high-performance donors. Combining this with side-chain engineering, two novel halogen-free polymer donors, PB2CT-BO and PB2CT-HD, were reported.
View Article and Find Full Text PDFJ Org Chem
January 2025
School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
A highly efficient Minisci reaction of pyrimidines with alkyl radical generated from visible-light-induced activation of simple C(sp)-H feedstocks such as (cyclo)alkanes, ethers, alcohols, esters, and amides is reported. A mechanistic study revealed that alkyl radical was generated via hydrogen atom transfer (HAT) of C(sp)-H with dichloromethyl radical (·CHCl), which was generated by photoreduction of chloroform.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
Ni-catalyzed asymmetric reductive cross-coupling reactions provide rapid and modular access to enantioenriched building blocks from simple electrophile precursors. Reductive coupling reactions that can diverge through a common organometallic intermediate to two distinct families of enantioenriched products are particularly versatile but underdeveloped. Here, we describe the development of a bis(oxazoline) ligand that enables the desymmetrization of -anhydrides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!