Here we report the draft genome of Yersinia entomophaga type strain MH96T. The genome shows 93.8% nucleotide sequence identity to that of Yersinia nurmii type strain APN3a-cT, and comprises a single chromosome of approximately 4,275,531 bp. In silico analysis identified that, in addition to the previously documented Y. entomophaga Yen-TC gene cluster, the genome encodes a diverse array of toxins, including two type III secretion systems, and five rhs-associated gene clusters. As well as these multicomponent systems, several orthologs of known insect toxins, such as VIP2 toxin and the binary toxin PirAB, and distant orthologs of some mammalian toxins, including repeats-in-toxin, a cytolethal distending toxin, hemolysin-like genes and an adenylate cyclase were identified. The genome also contains a large number of hypothetical proteins and orthologs of known effector proteins, such as LopT, as well as genes encoding a wide range of proteolytic determinants, including metalloproteases and pathogen fitness determinants, such as genes involved in iron metabolism. The bioinformatic data derived from the current in silico analysis, along with previous information on the pathobiology of Y. entomophaga against its insect hosts, suggests that a number of these virulence systems are required for survival in the hemocoel and incapacitation of the insect host.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4885058PMC
http://dx.doi.org/10.3390/toxins8050143DOI Listing

Publication Analysis

Top Keywords

type strain
12
draft genome
8
yersinia entomophaga
8
strain mh96t
8
silico analysis
8
toxins including
8
genome sequence
4
sequence yersinia
4
entomophaga
4
entomophaga entomopathogenic
4

Similar Publications

sp. nov., isolated from a patient with ruptured appendicitis.

Int J Syst Evol Microbiol

January 2025

Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, PR China.

A clinical isolate, R131, was isolated from the peritoneal swab of a patient who suffered from ruptured appendicitis with abscess and gangrene in Hong Kong in 2018. Cells are facultatively anaerobic, non-motile, Gram-positive coccobacilli. Colonies were small, grey, semi-translucent, low convex and alpha-haemolytic.

View Article and Find Full Text PDF

The PurR family transcriptional regulator promotes butenyl-spinosyn production in Saccharopolyspora pogona.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Butenyl-spinosyn, derived from Saccharopolyspora pogona, is a broad-spectrum and effective bioinsecticide. However, the regulatory mechanism affecting butenyl-spinosyn synthesis has not been fully elucidated, which hindered the improvement of production. Here, a high-production strain S.

View Article and Find Full Text PDF

It was previously reported that utilization of tetrathionate and 1,2-propanediol by spp. through the metabolic pathways encoded by and operons are related to overgrowth and out-competing microbiota in an anaerobic environment. However, recent knowledge demonstrated which strains in the absence of and genes provoke both higher intestinal colonization and spreading bacteria on faeces in relation to their respective wild-type strain, and generate more prominent inflammation as well.

View Article and Find Full Text PDF

Background: Pseudomonas aeruginosa is a significant opportunistic pathogen, especially in hospital-acquired infections, with plasmid-mediated fluoroquinolone resistance posing a major healthcare threat. This research aimed to isolate fluoroquinolone-resistant P. aeruginosa from patients at Aleppo University Hospital, assess the prevalence of fluoroquinolone resistance, confirm molecular identity, identify plasmid-associated resistance genes, and investigate virulence factors.

View Article and Find Full Text PDF

Protein glycosylation has been considered as a fundamental phenomenon shared by all domains of life. In , glycosylation of flagellins A and B with pseudaminic acid have been rigorously confirmed and shown to be essential for flagella assembly and bacterial colonization. In addition to flagellins, several other proteins including RecA, AlpA/B, and BabA/B in have also been reported to be glycosylated and to be dependent on the lipopolysaccharide (LPS) biosynthetic pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!