Restricted diets and inadequate nutrient intake of children with autism spectrum disorder (ASD) have been reported. This study examined the nutritional statuses of children with ASD and the relationships between their behaviors and nutritional intake. A total of 154 children with ASD (age = 5.21 ± 1.83 years) and 73 typically-developing (TD) children (age = 4.83 ± 0.84 years) from Chongqing, China, were enrolled. The severity of ASD was evaluated using the Childhood Autism Rating Scale (CARS). The serum ferritin, folate, vitamin B12, 25(OH) vitamin D, and vitamin A concentrations in the children with ASD were determined. All participants underwent anthropometric examinations, dietary assessments, and questionnaire assessments about their feeding behaviors, and gastrointestinal symptoms. The ZHA, ZWA, and ZBMIA were found to be significantly lower in the children with ASD compared with those without ASD. In addition, the percentages of children exhibiting severe picky eating and severe resistance to new foods, as well as those with a reported general impression of severe eating problems and constipation, were higher among the children with ASD. These children consumed significantly fewer macronutrients compared with the children without ASD. In addition, the children with ASD had the highest rate of vitamin A deficiency, followed by iron deficiency. After adjusting for sex, the vitamin A concentration was found to be negatively correlated with the CARS score (rs = -0.222, p = 0.021). No correlation between the ferritin, folate, vitamin D, or vitamin B12 concentration and the CARS score was found. These results suggest that reduced macronutrient intakes, severe feeding behavior issues, constipation, and vitamin A deficiency are quite common among children with ASD. Further, a low serum vitamin A level may be a risk factor for symptoms of ASD. However, the underlying mechanism should be further studied.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882707 | PMC |
http://dx.doi.org/10.3390/nu8050294 | DOI Listing |
Transl Psychiatry
January 2025
Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea.
Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Child Health, Qingdao Huangdao District Central Hospital, 266555 Qingdao, Shandong, China.
Background: Autism spectrum disorder (ASD) has been reported to confer an increased risk of natural premature death. Telomere erosion caused by oxidative stress is a common consequence in age-related diseases. However, whether telomere length (TL) and oxidative indicators are significantly changed in ASD patients compared with controls remains controversial.
View Article and Find Full Text PDFNutrients
January 2025
Department of Pediatrics, Buzzi Children's Hospital, 20154 Milan, Italy.
Background: The metabolism of plasma amino acid (AA) in children with autism spectrum disorder (ASD) has been extensively investigated, yielding inconclusive results. This study aims to characterize the metabolic alterations in AA profiles among early-diagnosed children with ASD and compare the findings with those from non-ASD children.
Methods: We analyzed plasma AA profiles, measured by ion exchange chromatography, from 1242 ASD children (median age = 4 years; 81% male).
Int J Mol Sci
January 2025
Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
Autism Spectrum Disorder (ASD) is a complex condition with a multifactorial aetiology including both genetic and epigenetic factors. MicroRNAs (miRNAs) play a role in ASD and may influence metabolic pathways. Glycosylation (the glycoconjugate synthesis pathway) is a necessary process for the optimal development of the central nervous system (CNS).
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy.
Increasing evidence indicates that human endogenous retroviruses (HERVs) are important to human health and are an underexplored component of many diseases. Certain HERV families show unique expression patterns and immune responses in autism spectrum disorder (ASD) patients compared to healthy controls, suggesting their potential as biomarkers. Despite these interesting findings, the role of HERVs in ASD needs to be further investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!