In this study, a novel coupling model for landslide susceptibility mapping is presented. In practice, environmental factors may have different impacts at a local scale in study areas. To provide better predictions, a geographically weighted regression (GWR) technique is firstly used in our method to segment study areas into a series of prediction regions with appropriate sizes. Meanwhile, a support vector machine (SVM) classifier is exploited in each prediction region for landslide susceptibility mapping. To further improve the prediction performance, the particle swarm optimization (PSO) algorithm is used in the prediction regions to obtain optimal parameters for the SVM classifier. To evaluate the prediction performance of our model, several SVM-based prediction models are utilized for comparison on a study area of the Wanzhou district in the Three Gorges Reservoir. Experimental results, based on three objective quantitative measures and visual qualitative evaluation, indicate that our model can achieve better prediction accuracies and is more effective for landslide susceptibility mapping. For instance, our model can achieve an overall prediction accuracy of 91.10%, which is 7.8%-19.1% higher than the traditional SVM-based models. In addition, the obtained landslide susceptibility map by our model can demonstrate an intensive correlation between the classified very high-susceptibility zone and the previously investigated landslides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4881112 | PMC |
http://dx.doi.org/10.3390/ijerph13050487 | DOI Listing |
Data Brief
February 2025
Department of Earth and Geoenvironmental Sciences, University of Bari, 70125 Bari, Italy.
An open-source geodatabase and its associate WebGIS platform (CONNECTOSED) were developed to collect and utilize data for the Sediment Flow Connectivity Index (SfCI) for the Apulia region of southern Italy. Maps depicting sediment mobility and connectivity across the hydrographic basins of the Apulia region were generated and stored in the geodatabase. This geodatabase is organized into folders containing data in TIFF, shapefile, Jpeg and Pdf formats, including input variables (digital elevation model, land cover map, rainfall map, and soil units dataset for each hydrographic basin), classification graphs (ranking of variable values), dimensionless index maps (slope, ruggedness, rainfall, land cover, and soil stability) and key products (maps of sediment mobility, SfCI, and applied SfCI).
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Geology, China Earthquake Administration, Beijing, 100029, China.
The position of landslides on a slope plays a crucial role in determining landslide susceptibility and the likelihood of landslide debris interacting with the fluvial system. Most studies primarily focus on shallow landslides in the bedrock weathering zone or large-scale bedrock landslides, but the relevant work about the location and connectivity to channels of loess landslides is limited despite their potential to provide insights into slope stability and material transport in loess regions. In this study, we explored differences in landslide location and connectivity to channels between 2013 Mw5.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil and Architectural Engineering, Sultan Qaboos University, PC: 123 Al Khoudh, Muscat, Oman.
This study critically examines the reliability and resilience of the Muscat coastal highway network (CHN) under the compounded effects of earthquakes and floods, representing interacting multi-hazard scenarios. The analysis utilized fragility functions for both earthquake-induced and flood-induced landslides, integrating these with traffic data for selected highway links to estimate bridge damage and assess CHN functionality in post-hazard conditions. Economic sensitivity analysis revealed a significant increase in costs due to flood-induced landslides, emphasizing the impact of dominant intensity measures on network costs and traffic flow.
View Article and Find Full Text PDFData Brief
December 2024
Department of Environmental Geography, Faculty of Geography, Universitas Gadjah Mada, 55281, Indonesia.
This article presents a comprehensive dataset developed for benchmarking machine learning-based landslide susceptibility models. The dataset includes landslide polygons delineated through manual interpretation of high-resolution satellite imagery and controlling factors data extracted from topographic maps and Indonesia's national digital elevation model (DEMNAS). Landslide events were mapped by comparing pre- and post-event satellite imagery from Tropical Cyclone (TC) Cempaka, which occurred from 27 to 29 November 2017, and verified through field surveys.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Laboratory of Territories, Environment and Development, Ibn Tofail University in Kénitra, Kénitra, Morocco.
The main goal of the research is to assess soil erosion while analyzing the spatial distribution of its evolution using the EPM (erosion potential model). Situated northwest of the upper Oum-Rbaa watershed in Morocco, the Admer-Ezem watershed is part of the research area. Its climate is Mediterranean, ranging from semi-arid to subhumid bioclimate, which favors fairly scattered vegetation and poor soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!