Calcineurin in a Crowded World.

Biochemistry

Center for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 South Limestone Street, Lexington, Kentucky 40536-0509, United States.

Published: June 2016

Calcineurin is a Ser/Thr phosphatase that is important for key biological processes, including immune system activation. We previously identified a region in the intrinsically disordered regulatory domain of calcineurin that forms a critical amphipathic α-helix (the "distal helix") that is required for complete activation of calcineurin. This distal helix was shown to have a Tm close to that of human body temperature. Because the Tm was determined in dilute buffer, we hypothesized that other factors inherent to a cellular environment might modulate the stability of the distal helix. One such factor that contributes to stability in other proteins is macromolecular crowding. The cell cytoplasm is comprised of up to 400 g/L protein, lipids, nucleic acids, and other compounds. We hypothesize that the presence of such crowders could increase the thermal stability of the distal helix and thus lead to a more robust activation of calcineurin in vivo. Using biophysical and biochemical approaches, we show that the distal helix of calcineurin is indeed stabilized when crowded by the synthetic polymers dextran 70 and ficoll 70, and that this stabilization of the distal helix increases the activity of calcineurin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4900146PMC
http://dx.doi.org/10.1021/acs.biochem.6b00059DOI Listing

Publication Analysis

Top Keywords

distal helix
20
activation calcineurin
8
stability distal
8
calcineurin
7
distal
5
helix
5
calcineurin crowded
4
crowded calcineurin
4
calcineurin ser/thr
4
ser/thr phosphatase
4

Similar Publications

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease in which repetitive epithelial injury and incomplete alveolar repair result in accumulation of profibrotic intermediate/transitional "aberrant" epithelial cell states. The mechanisms leading to the emergence and persistence of aberrant epithelial populations in the distal lung remain incompletely understood. By interrogating single-cell RNA sequencing (scRNA-seq) data from patients with IPF and a mouse model of repeated lung epithelial injury, we identified persistent activation of hypoxia-inducible factor (HIF) signaling in these aberrant epithelial cells.

View Article and Find Full Text PDF

MYOD is an E-box sequence-specific basic Helix-Loop-Helix (bHLH) transcriptional activator that, when expressed in non-muscle cells, induces nuclear reprogramming toward skeletal myogenesis by promoting chromatin accessibility at previously silent loci. Here, we report on the identification of a previously unrecognized property of MYOD as repressor of gene expression, via E-box-independent chromatin binding within accessible genomic elements, which invariably leads to reduced chromatin accessibility. MYOD-mediated repression requires the integrity of functional domains previously implicated in MYOD-mediated activation of gene expression.

View Article and Find Full Text PDF

Iron-sulfur (FeS) protein biogenesis in eukaryotes begins with the de novo assembly of [2Fe-2S] clusters by the mitochondrial core iron-sulfur cluster assembly (ISC) complex. This complex comprises the scaffold protein ISCU2, the cysteine desulfurase subcomplex NFS1-ISD11-ACP1, the allosteric activator frataxin (FXN) and the electron donor ferredoxin-2 (FDX2). The structural interaction of FDX2 with the complex remains unclear.

View Article and Find Full Text PDF

Peptidomimetic design for non-canonical interfaces is less well established than for α-helix and β-strand mediated protein-protein interactions. Using the TACC3/Aurora-A kinase interaction as a model, we developed a series of constrained TACC3 peptide variants with 10-fold increased binding potencies ( ) towards Aurora-A in comparison to the parent peptide. High-affinity is achieved in part by restricting the accessible conformational ensemble of the peptide leading to a more favourable entropy of binding.

View Article and Find Full Text PDF

In Photosystem II electrons from water splitting pass through a primary quinone electron acceptor (Q) to the secondary plastoquinone (Q). The D2 protein forms the Q-binding site and the D1 protein forms the Q-binding site. A non-heme iron sits between Q and Q resulting in a quinone-Fe-acceptor complex that must be activated before assembly of the oxygen-evolving complex can occur.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!