Conservative treatment of pediatric thoracic and lumbar spinal fractures: outcomes in the sagittal plane.

J Pediatr Orthop B

Departments of aPediatric Orthopaedics bAdult Orthopaedics, Pellegrin University Hospital, Bordeaux cDepartment of Pediatric Orthopaedics, Robert Debré Hospital, ap-hp, Paris dDepartment of Pediatric Orthopaedics, Purpan University Hospital, Toulouse, France.

Published: January 2017

To assess sagittal plane spinopelvic balance and functional outcomes in a pediatric cohort of patients with a thoracic and/or a lumbar fracture treated conservatively. A multicentric study retrospectively reviewed radiological and functional outcomes (mean follow-up 49 months) of 48 patients (mean age 12 years) with thoracic and/or lumbar spinal fractures that occurred between 1996 and 2014. Demographic data and radiological spinopelvic parameters were analyzed. Functional outcome was evaluated by a telephone interview. First, a comparison between the initial and the last follow-up full-spine radiographs was performed for the assessment of bone remodeling and sagittal plane balance. Then, patients were classified into two groups (group 1: Risser≤2 and group 2, Risser>2) to assess the influence of skeletal maturity on the restoration of a correct sagittal balance. A total of 62% of the patients were at skeletal maturity at the final follow-up (Risser 4 and 5). Patients with a Risser grade of 2 or less had a higher remodeling potential. The mean residual local kyphosis in thoracic and lumbar fractures was, respectively, 8.2° and 8.7°. The mean thoracic global kyphosis remains stable at the last follow-up, in contrast to lumbar lordosis, which increased significantly. Sagittal plane global measurements on the basis of the C7-plumbline remained unchanged at the last follow-up. There was no change in the pelvic parameters, except for the sacral slope in the group 1 for patients with a lumbar fracture. The current study confirms a greater correction in younger patients (Risser≤2) in spinal fractures and reported that thoracic fractures have a higher remodeling potential than lumbar fracture. A local kyphosis of almost 10° remained at the last follow-up. However, no deterioration in the sagittal plane balance was found. This suggests compensatory mechanisms in adjacent structures for children and adolescents and excludes the only hypothesis of bone remodeling.

Download full-text PDF

Source
http://dx.doi.org/10.1097/BPB.0000000000000329DOI Listing

Publication Analysis

Top Keywords

sagittal plane
20
spinal fractures
12
lumbar fracture
12
thoracic lumbar
8
lumbar spinal
8
functional outcomes
8
thoracic and/or
8
and/or lumbar
8
bone remodeling
8
plane balance
8

Similar Publications

Due to the low contrast of abdominal CT (Computer Tomography) images and the similar color and shape of the liver to other organs such as the spleen, stomach, and kidneys, liver segmentation presents significant challenges. Additionally, 2D CT images obtained from different angles (such as sagittal, coronal, and transverse planes) increase the diversity of liver morphology and the complexity of segmentation. To address these issues, this paper proposes a Detail Enhanced Convolution (DE Conv) to improve liver feature learning and thereby enhance liver segmentation performance.

View Article and Find Full Text PDF

Analysis and prediction of condylar resorption following orthognathic surgery.

Sci Rep

January 2025

OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium.

Condylar resorption is a feared complication of orthognathic surgery. This study investigated condylar resorption in a cohort of 200 patients This allowed for a powerful update on incidence and risk factors. 9.

View Article and Find Full Text PDF

Multi-Planar Cervical Motion Dataset: IMU Measurements and Goniometer.

Sci Data

January 2025

Department of Anatomy and Anthropology, Faculty of Medical & Health Sciences, Tel- Aviv University, Tel-Aviv, 699780, Israel.

This data descriptor presents a comprehensive and replicable dataset and method for calculating the cervical range of motion (CROM) utilizing quaternion-based orientation analysis from Delsys inertial measurement unit (IMU) sensors. This study was conducted with 14 participants and analyzed 504 cervical movements in the Sagittal, Frontal and Horizontal planes. Validated against a Universal Goniometer and tested for reliability and reproducibility.

View Article and Find Full Text PDF

A Faster Walking Speed Is Important for Improving Biomechanical Function and Walking Performance.

J Appl Biomech

January 2025

Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom.

This study compares joint kinematics and kinetics of young stroke survivors who walk <0.79 m/s (slow) or >0.80 m/s (fast) with reference to a healthy able-bodied group and provides clinical recommendations for guiding the gait rehabilitation of stroke survivors.

View Article and Find Full Text PDF

A valid novel ground reaction force distribution algorithm to determine midfoot kinetics of gait with a single force plate.

Gait Posture

December 2024

Marquette University, 1250 W. Wisconsin Ave, Milwaukee, WI 53233, United States; Shriners Children's Chicago, 2211 N. Oak Park Ave, Chicago, IL 60707, United States.

Background: Understanding midfoot joint kinetics is valuable for improved treatment of foot pathologies. Segmental foot kinetics cannot currently be obtained in a standard gait lab without the use of multiple force plates or a pedobarographic plate overlaid with a force plate due to the single ground reaction force (GRF) vector.

Research Question: Can an algorithm be created to distribute the GRF into multiple segmental vectors that will allow for calculation of accurate midfoot and ankle moments?

Methods: 20 pediatric subjects (10 typically developing, 10 with foot pathology) underwent multi-segment foot gait analysis using the Milwaukee Foot Model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!