Introduction: Periodic relapses are one of the main characteristics of multiple sclerosis (MS), from which recovery is often incomplete despite high-dose methylprednisolone (HDMP) treatment. The aim of our study was to evaluate the potential benefits of short-term HDMP combined with multidisciplinary rehabilitation (MDR) in persons with MS in relapse in order to assess whether combination of steroid therapy with MDR is more beneficial than steroid therapy alone.

Material And Methods: This investigation was conducted as a randomized controlled trial. The MS patients were eligible if they had an established diagnosis and relapse requiring application of HDMP. Forty-nine patients were included in the study and randomized to control and treatment groups, and 37 completed the study. High-dose methylprednisolone was administered to all patients. The treatment group additionally underwent an MDR program over a 3-week period. All outcome measures were completed at baseline and 1 and 3 months later.

Results: The Expanded Disability Status Scale (EDSS) and Functional Independence Measure (FIM) motor scores improved statistically significantly 1 month after HDMP, in both treatment and control groups. During the study period, in the treatment group, a sustained large effect size (ES) was found for both physical and mental composite scores of Multiple Sclerosis Quality of Life-54 (MSQoL-54), while in the controls, a sustained moderate ES was demonstrated only for physical composite score.

Conclusions: Our findings suggest that MDR improves MS relapse outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848347PMC
http://dx.doi.org/10.5114/aoms.2015.47289DOI Listing

Publication Analysis

Top Keywords

multiple sclerosis
12
multidisciplinary rehabilitation
8
randomized controlled
8
controlled trial
8
high-dose methylprednisolone
8
hdmp treatment
8
steroid therapy
8
treatment group
8
treatment
5
rehabilitation steroids
4

Similar Publications

Differentiation between multiple sclerosis and neuromyelitis optic spectrum disorders with multilevel fMRI features: A machine learning analysis.

Sci Rep

January 2025

Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.

The conventional statistical approach for analyzing resting state functional MRI (rs-fMRI) data struggles to accurately distinguish between patients with multiple sclerosis (MS) and those with neuromyelitis optic spectrum disorders (NMOSD), highlighting the need for improved diagnostic efficacy. In this study, multilevel functional metrics including resting state functional connectivity, amplitude of low frequency fluctuation (ALFF), and regional homogeneity (ReHo) were calculated and extracted from 116 regions of interest in the anatomical automatic labeling atlas. Subsequently, classifiers were developed using different combinations of these selected features to distinguish between MS and NMOSD.

View Article and Find Full Text PDF

Toward curing neurological autoimmune disorders: Biomarkers, immunological mechanisms, and therapeutic targets.

Neuron

January 2025

Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA. Electronic address:

Autoimmune neurology is a rapidly expanding field driven by the discovery of neuroglial autoantibodies and encompassing a myriad of conditions affecting every level of the nervous system. Traditionally, autoantibodies targeting intracellular antigens are considered markers of T cell-mediated cytotoxicity, while those targeting extracellular antigens are viewed as pathogenic drivers of disease. However, recent advances highlight complex interactions between these immune mechanisms, suggesting a continuum of immunopathogenesis.

View Article and Find Full Text PDF

Multiple Sclerosis (MS) is a heterogeneous autoimmune-mediated disorder affecting the central nervous system, commonly manifesting as fatigue and progressive limb impairment. This can significantly impact quality of life due to weakness or paralysis in the upper and lower limbs. A Brain-Computer Interface (BCI) aims to restore quality of life through control of an external device, such as a wheelchair.

View Article and Find Full Text PDF

Effectiveness, safety, and impact on multiple sclerosis course of anti-CGRP monoclonal antibodies.

J Neurol Sci

January 2025

Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Italy; Department of Medical Sciences and Public Health, University of Cagliari, Italy.

Background: Migraine affects up to 40% of people with multiple sclerosis (PwMS). This study aimed to evaluate the effectiveness and safety of the combination of antibodies (mAbs) against CGRP (anti-CGRP mAbs) with disease-modifying treatments (DMTs) for MS (mAb and non-mAbs) and their impact on MS disease course.

Methods: This retrospective, multicentric study included PwMS from 14 MS Centers, treated with an anti-CGRP mAb and a stable treatment with DMTs.

View Article and Find Full Text PDF

Retinal Changes After Acute and Late Optic Neuritis in Aquaporin-4 Antibody Seropositive NMOSD.

J Neuroophthalmol

December 2024

Experimental and Clinical Research Center (FCO, HGZ, SM, CB, ESA, CC, FP, AUB), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; NeuroCure Clinical Research Center (FCO, HGZ, SM, CB, ESA, CC, FP, AUB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Neurology (AJG), University of California San Francisco, San Francisco, California; Neurology (RM, ACC), Multiple Sclerosis, Myelin Disorders and Neuroinflammation Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, France; Centre d'Esclerosi Múltiple de Catalunya (Cemcat) (ACC), Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Experimental Neurophysiology Unit (LL, MP, M. Radaelli), Institute of Experimental Neurology (INSPE) Scientific Institute, Hospital San Raffaele and University Vita-Salute San Raffaele, Milan, Italy; Hospital Clinic of Barcelona-Institut d'Investigacions (PV, BS-D, EHM-L), Biomèdiques August Pi Sunyer, (IDIBAPS), Barcelona, Spain; CIEM MS Research Center (MAL-P, MAF), University of Minas Gerais, Medical School, Belo Horizonte, Brazil; Department of Neurology (OA, M. Ringelstein, PA), Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Neurology (M. Ringelstein), Centre for Neurology and Neuropsychiatry, LVR Klinikum, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Medicine (MRY), Harbor-University of California at Los Angeles (UCLA) Medical Center, and Lundquist Institute for Biomedical Innovation, Torrance, California; Department of Medicine (MRY), David Geffen School of Medicine at UCLA, Los Angeles, California; Departments of Ophthalmology and Visual Sciences (TJS), Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan; Division of Metabolism, Endocrine and Diabetes (TJS, LC), Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan; Department of Neurology (FP), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; and Department of Neurology (AUB), University of California, Irvine, California.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!