As one member of ADAR family, ADAR1 (adenosine deaminase acting on RNA 1) can convert adenosine to inosine within dsRNA. There are many ADAR1 splicing isoforms in mammals, including an interferon (IFN) inducible ∼150 kD protein (ADAR1-p150) and a constitutively expressed ∼110 kD protein (ADAR1-p110). The structural diversity of ADAR1 splicing isoforms may reflect their multiple functions. ADAR1 splicing isoforms were also found in fish. In our previous study, we have cloned and identified two different grass carp ADAR1 splicing isoforms, i.e. CiADAR1 and CiADAR1-like, both of them are IFN-inducible proteins. In this paper, we identified a novel CiADAR1 splicing isoform gene (named CiADAR1a). CiADAR1a gene contains 15 exons and 14 introns. Its full-length cDNA is comprised of a 5' UTR (359 bp), a 3' UTR (229 bp) and a 2952 bp ORF encoding a polypeptide of 983 amino acids with one Z-DNA binding domain, three dsRNA binding motifs and a highly conserved hydrolytic deamination domain. CiADAR1a was constitutively expressed in Ctenopharyngodon idella kidney (CIK) cells regardless of Poly I:C stimulation by Western blot assay. In normal condition, CiADAR1a was found to be present mainly in the nucleus. After treatment with Poly I:C, it gradually shifted to cytoplasm. To further investigate the mechanism of transcriptional regulation of CiADAR1a, we cloned and identified its promoter sequence. The transcriptional start site of CiADAR1a is mapped within the truncated exon 2. CiADAR1a promoter is 1303 bp in length containing 4 IRF-Es. In the present study, we constructed pcDNA3.1 eukaryotic expression vectors with IRF1 and IRF3 and co-transfected them with pGL3-CiADAR1a promoter into CIK cells. The results showed that neither the over-expression of IRF1 or IRF3 nor Poly I:C stimulation significantly impacted CiADAR1a promoter activity in CIK cells. Together, according to the molecular and expression characteristics, subcellular localization and transcriptional regulatory mechanism, we deduced that CiADAR1a shared a high degree of homology with mammalian ADAR1-p110.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2016.05.008DOI Listing

Publication Analysis

Top Keywords

adar1 splicing
20
splicing isoforms
16
constitutively expressed
12
cik cells
12
ciadar1a
10
expressed ctenopharyngodon
8
ctenopharyngodon idella
8
splicing isoform
8
cloned identified
8
poly stimulation
8

Similar Publications

RNA Modifications Shape Hematopoietic Stem Cell Aging: Beyond the Code.

FEBS Lett

November 2024

Sanford Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, California, 92037, USA.

Article Synopsis
  • As we get older, the system that makes our blood cells (the hematopoietic system) starts to change and doesn't work as well.
  • This causes problems like making more of certain blood cells and fewer B and T cells, which help our immune system.
  • Also, there are changes in the details of how our cells work at a microscopic level that make these aging effects happen more and can lead to more inflammation in the body.
View Article and Find Full Text PDF

ADAR-Mediated A>I(G) RNA Editing in the Genotoxic Drug Response of Breast Cancer.

Int J Mol Sci

July 2024

Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile.

Epitranscriptomics is a field that delves into post-transcriptional changes. Among these modifications, the conversion of adenosine to inosine, traduced as guanosine (A>I(G)), is one of the known RNA-editing mechanisms, catalyzed by ADARs. This type of RNA editing is the most common type of editing in mammals and contributes to biological diversity.

View Article and Find Full Text PDF

Adenosine Deaminases Acting on RNA (ADARs) are evolutionarily conserved enzymes known to convert adenosine to inosine in double-stranded RNAs and participate in host-virus interactions. Conducting a meta-analysis of available transcriptome data, we identified and characterised eight ADAR transcripts in Chlamys farreri, a farmed marine scallop susceptible to Acute viral necrosis virus (AVNV) infections and mortality outbreaks. Accordingly, we identified six ADAR genes in the Zhikong scallop genome, revised previous gene annotations, and traced alternative splicing variants.

View Article and Find Full Text PDF

PTIR1 acts as an isoform of DDX58 and promotes tumor immune resistance through activation of UCHL5.

Cell Rep

November 2023

Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China; Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China. Electronic address:

Cancer evades host immune surveillance by virtue of poor immunogenicity. Here, we report an immune suppressor, designated as PTIR1, that acts as a promotor of tumor immune resistance. PTIR1 is selectively induced in human cancers via alternative splicing of DDX58 (RIG-I), and its induction is closely related to poor outcome in patients with cancer.

View Article and Find Full Text PDF

The term RNA editing refers to any structural change in an RNA molecule ( insertion, deletion, or base modification) that changes its coding properties and is not a result of splicing. An important class of enzymes involved in RNA editing is the ADAR family (adenosine deaminases acting on RNA), which facilitate the deamination of adenosine (A) to inosine (I) in double-stranded RNA (dsRNA). Inosines are decoded as guanosines (G) in most cellular processes; hence, A-to-I editing can be considered an A-to-G substitution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!