AI Article Synopsis

Article Abstract

The 19 X-STRs multiplex system is a PCR-based amplification kit that facilitates simultaneous amplification of 19 X-chromosomal STR loci (i.e. DXS7423, DXS10148, DXS10159, DXS6809, DXS7424, DXS8378, DXS10164, DXS10162, DXS7132, DXS10079, DXS6789, DXS101, DXS10103,DXS10101, HPTRB, DXS10075, DXS10074, DXS10135, and DXS10134). Eleven loci were extensively used in an Investigator Qiagen Argus X-12 (DXS7423, DXS10148, DXS8378, DXS10162, DXS7132, DXS10079, DXS10103, DXS10101, HPTRB, DXS10074, and DXS10135). In this research, the multiplex system was tested for detection sensitivity, DNA mixtures, inhibitor tolerance and species specificity; SWGDAM Validation Guidelines - Approved December 2012 were followed for the human fluorescent STR multiplex PCR reagent. Samples from 181 unrelated Zhejiang Han individuals (121 males and 60 females) were typed using this multiplex system. The results show that this 19X-STRs multiplex system is a robust and reliable amplification means to facilitate forensic and human identification testing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201500540DOI Listing

Publication Analysis

Top Keywords

multiplex system
20
zhejiang han
8
dxs7423 dxs10148
8
dxs10162 dxs7132
8
dxs7132 dxs10079
8
dxs10074 dxs10135
8
multiplex
6
system
5
development x-str
4
x-str loci
4

Similar Publications

CRISPR-Cas technologies have drastically revolutionized genetic engineering and also dramatically changed the potential for treating inherited disorders. The potential to correct genetic mutations responsible for numerous hereditary disorders from single-gene disorders to complex polygenic diseases through precise DNA editing is feasible. The tactic now employed in CRISPR-Cas systems for treating inherited disorders is the usage of particular guide RNAs to target and edit disease-causing mutations in the patient's genome.

View Article and Find Full Text PDF

Protein-Protein Interactions (PPIs) are a key interface between virus and host, and these interactions are important to both viral reprogramming of the host and to host restriction of viral infection. In particular, viral-host PPI networks can be used to further our understanding of the molecular mechanisms of tissue specificity, host range, and virulence. At higher scales, viral-host PPI screening could also be used to screen for small-molecule antivirals that interfere with essential viral-host interactions, or to explore how the PPI networks between interacting viral and host genomes co-evolve.

View Article and Find Full Text PDF

The development of a real-time system for characterizing individual biomolecule-containing aerosol particles presents a transformative opportunity to monitor respiratory conditions, including infections and lung diseases. Existing molecular assay technologies, although effective, rely on costly reagents, are relatively slow, and face challenges in multiplexing, limiting their use for real-time applications. To overcome these challenges, we developed digitalMALDI, a laser-based mass spectrometry system designed for single-particle characterization.

View Article and Find Full Text PDF

The complex nature of the immunosuppressive tumor microenvironment (TME) requires multi-agent combinations for optimal immunotherapy. Here we describe multiplex universal combinatorial immunotherapy via gene silencing (MUCIG), which uses CRISPR-Cas13d to silence multiple endogenous immunosuppressive genes in the TME, promoting TME remodeling and enhancing antitumor immunity. MUCIG vectors targeting four genes delivered by adeno-associated virus (AAV) (Cd274/Pdl1, Lgals9/Galectin9, Lgals3/Galectin3 and Cd47; AAV-Cas13d-PGGC) demonstrate significant antitumor efficacy across multiple syngeneic tumor models, remodeling the TME by increasing CD8 T-cell infiltration while reducing neutrophils.

View Article and Find Full Text PDF

Large-scale quantum networks require dynamic and resource-efficient solutions to reduce system complexity with maintained security and performance to support growing number of users over large distances. Current encoding schemes including time-bin, polarization, and orbital angular momentum, suffer from the lack of reconfigurability and thus scalability issues. Here, we demonstrate the first-time implementation of frequency-bin-encoded entanglement-based quantum key distribution and a reconfigurable distribution of entanglement using frequency-bin encoding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!