Background: Insect metamorphosis relies on temporal and spatial cues that are precisely controlled. Previous studies in Drosophila have shown that untimely activation of genes that are essential to metamorphosis results in growth defects, developmental delay and death. Multiple factors exist that safeguard these genes against dysregulated expression. The list of identified negative regulators that play such a role in Drosophila development continues to expand.

Results: By using RNAi transgene-induced gene silencing coupled to spatio/temporal assessment, we have unraveled an important role for the Drosophila dopamine 1-like receptor, Dop1R2, in development. We show that Dop1R2 knockdown leads to pre-adult lethality. In adults that escape death, abnormal wing expansion and/or melanization defects occur. Furthermore we show that salivary gland expression of this GPCR during the late larval/prepupal stage is essential for the flies to survive through adulthood. In addition to RNAi-induced effects, treatment of larvae with the high affinity D1-like receptor antagonist flupenthixol, also results in developmental arrest, and in morphological defects comparable to those seen in Dop1R2 RNAi flies. To examine the basis for pupal lethality in Dop1R2 RNAi flies, we carried out transcriptome analysis. These studies revealed up-regulation of genes that respond to ecdysone, regulate morphogenesis and/or modulate defense/immunity.

Conclusion: Taken together our findings suggest a role for Dop1R2 in the repression of genes that coordinate metamorphosis. Premature release of this inhibition is not tolerated by the developing fly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868058PMC
http://dx.doi.org/10.1186/s12861-016-0115-zDOI Listing

Publication Analysis

Top Keywords

role drosophila
12
drosophila dopamine
8
d1-like receptor
8
receptor dop1r2
8
dop1r2 rnai
8
rnai flies
8
dop1r2
6
critical role
4
drosophila
4
dopamine d1-like
4

Similar Publications

The centromere effect (CE) is a meiotic phenomenon that ensures meiotic crossover suppression in pericentromeric regions. Despite being a critical safeguard against nondisjunction, the mechanisms behind the CE remain unknown. Previous studies have shown that various regions of the pericentromere, encompassing proximal euchromatin, beta and alpha heterochromatin, undergo varying levels of crossover suppression, raising the question of whether distinct mechanisms establish the CE in these different regions.

View Article and Find Full Text PDF

The protein encoded by the gene ( ) plays an essential role in early gametogenesis by complexing with the gene product of ( ) to promote germline stem cell daughter differentiation in males and females. Here, we compared the AlphaFold2 and AlphaFold Multimer predicted structures of Bam protein and the Bam:Bgcn protein complex between , where is necessary in gametogenesis to that in , where it is not. Despite significant sequence divergence, we find very little evidence of significant structural differences in high confidence regions of the structures across the four species.

View Article and Find Full Text PDF

While Drosophila melanogaster serves as a crucial model for investigating both the circadian clock and gut microbiome, our understanding of their relationship in this organism is still limited. Recent analyses suggested that the Drosophila gut microbiome modulates the host circadian transcriptome to minimize rapid oscillations in response to changing environments. Here, we examined the composition and abundance of the gut microbiota in wild-type and arrhythmic per flies, under 12 h:12 h light: dark (12:12 LD) and constant darkness (DD) conditions.

View Article and Find Full Text PDF

Steroid hormone-induced wingless ligands tune female intestinal size in Drosophila.

Nat Commun

January 2025

Department of Biology, Institute of Genetics, The Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.

Female reproduction comes at great expense to energy metabolism compensated by extensive organ adaptations including intestinal size. Upon mating, endocrine signals orchestrate a 30% net increase of absorptive epithelium. Mating increases production of the steroid hormone Ecdysone released by the Drosophila ovaries that stimulates intestinal stem cell (ISC) divisions.

View Article and Find Full Text PDF

Endocytosis of Wnt ligands from surrounding epithelial cells positions microtubule nucleation sites at dendrite branch points.

PLoS Biol

January 2025

Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America.

Microtubule nucleation is important for microtubule organization in dendrites and for neuronal injury responses. The core nucleation protein, γTubulin (γTub), is localized to dendrite branch points in Drosophila sensory neurons by Wnt receptors and scaffolding proteins on endosomes. However, whether Wnt ligands are important is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!