Carbohydrate receptors on alveolar macrophages are attractive targets for receptor-mediated delivery of nanostructured therapeutics. In this study, we employed reversible addition fragmentation chain transfer polymerization to synthesize neoglycopolymers, consisting of mannose- and galactose methacrylate-based monomers copolymerized with cholesterol methacrylate for use in functional liposome studies. Glycopolymer-functional liposomes were employed to elucidate macrophage mannose receptor (CD206) and macrophage galactose-type lectin (CD301) targeting in both primary macrophage and immortal macrophage cell lines. Expression of CD206 and CD301 was observed to vary significantly between cell lines (murine alveolar macrophage, murine bone marrow-derived macrophage, RAW264.7, and MH-S), which has significant implications in in vitro targeting and uptake studies. Synthetic glycopolymers and glycopolymer augmented liposomes demonstrated specific receptor-mediated uptake in a manner dependent on carbohydrate receptor expression. These results establish a platform capable of probing endogenous carbohydrate receptor-mediated targeting via glycofunctional nanomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2016.05.001DOI Listing

Publication Analysis

Top Keywords

glycopolymer augmented
8
augmented liposomes
8
cell lines
8
macrophage
6
nanostructured glycopolymer
4
liposomes elucidate
4
elucidate carbohydrate-mediated
4
targeting
4
carbohydrate-mediated targeting
4
targeting carbohydrate
4

Similar Publications

Inducing tumor-specific T cell responses and regulating suppressive tumor microenvironments have been a challenge for effective tumor therapy. CpG (ODN), the Toll-like receptor 9 agonist, has been widely used as adjuvants of cancer vaccines to induce T cell responses. We developed a novel adjuvant to improve the targeting of lymph nodes.

View Article and Find Full Text PDF

Unlabelled: secretes phenol-soluble modulins (PSMs), a family of small, amphipathic, secreted peptides with multiple biologic activities. Community-acquired strains produce high levels of PSMs in planktonic cultures, and PSM alpha peptides have been shown to augment the release of extracellular membrane vesicles (MVs). We observed that amyloids, aggregates of proteins characterized by a fibrillar morphology and stained with specific dyes, co-purified with MVs harvested from cell-free culture supernatants of community-acquired strains.

View Article and Find Full Text PDF

Functional Nanoassemblies of Cyclic Polymers Show Amplified Responsiveness and Enhanced Protein-Binding Ability.

ACS Nano

August 2020

Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.

The physicochemical properties of cyclic polymer adsorbates are significantly influenced by the steric and conformational constraints introduced during their cyclization. These translate into a marked difference in interfacial properties between cyclic polymers and their linear counterparts when they are grafted onto surfaces yielding nanoassemblies or polymer brushes. This difference is particularly clear in the case of cyclic polymer brushes that are designed to chemically interact with the surrounding environment, for instance, by associating with biological components present in the medium, or, alternatively, through a response to a chemical stimulus by a significant change in their properties.

View Article and Find Full Text PDF

Carbohydrate receptors on alveolar macrophages are attractive targets for receptor-mediated delivery of nanostructured therapeutics. In this study, we employed reversible addition fragmentation chain transfer polymerization to synthesize neoglycopolymers, consisting of mannose- and galactose methacrylate-based monomers copolymerized with cholesterol methacrylate for use in functional liposome studies. Glycopolymer-functional liposomes were employed to elucidate macrophage mannose receptor (CD206) and macrophage galactose-type lectin (CD301) targeting in both primary macrophage and immortal macrophage cell lines.

View Article and Find Full Text PDF

Proton-binding capacity of Staphylococcus aureus wall teichoic acid and its role in controlling autolysin activity.

PLoS One

February 2013

Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology, University of Tübingen, Tübingen, Germany.

Wall teichoic acid (WTA) or related polyanionic cell wall glycopolymers are produced by most gram-positive bacterial species and have been implicated in various cellular functions. WTA and the proton gradient across bacterial membranes are known to control the activity of autolysins but the molecular details of these interactions are poorly understood. We demonstrate that WTA contributes substantially to the proton-binding capacity of Staphylococcus aureus cell walls and controls autolysis largely via the major autolysin AtlA whose activity is known to decline at acidic pH values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!