The genomes of hybrid organisms, such as lager yeast (Saccharomyces cerevisiae × Saccharomyces eubayanus), contain orthologous genes, the functionality and effect of which may differ depending on their origin and copy number. How the parental subgenomes in lager yeast contribute to important phenotypic traits such as fermentation performance, aroma production, and stress tolerance remains poorly understood. Here, three de novo lager yeast hybrids with different ploidy levels (allodiploid, allotriploid, and allotetraploid) were generated through hybridization techniques without genetic modification. The hybrids were characterized in fermentations of both high gravity wort (15 °P) and very high gravity wort (25 °P), which were monitored for aroma compound and sugar concentrations. The hybrid strains with higher DNA content performed better during fermentation and produced higher concentrations of flavor-active esters in both worts. The hybrid strains also outperformed both the parent strains. Genome sequencing revealed that several genes related to the formation of flavor-active esters (ATF1, ATF2¸ EHT1, EEB1, and BAT1) were present in higher copy numbers in the higher ploidy hybrid strains. A direct relationship between gene copy number and transcript level was also observed. The measured ester concentrations and transcript levels also suggest that the functionality of the S. cerevisiae- and S. eubayanus-derived gene products differs. The results contribute to our understanding of the complex molecular mechanisms that determine phenotypes in lager yeast hybrids and are expected to facilitate targeted strain development through interspecific hybridization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947488 | PMC |
http://dx.doi.org/10.1007/s00253-016-7588-3 | DOI Listing |
Int J Food Sci Nutr
December 2024
Department of Coffee Design, Federal Institute of Espírito Santo, Venda Nova do Imigrante, Espírito Santo, Brazil.
Climatic conditions, genotypes, and post-harvest processing methods influence coffee quality. Microbial fermentation during post-harvest processing has sparked researchers' interest due to the modulation of the sensory characteristics of coffee. However, the influence of microbial fermentation on different coffee genotypes has been little investigated.
View Article and Find Full Text PDFFoods
November 2024
Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
New techniques for the immobilization of yeast cells have the potential for enhancement of the beer production process. Alongside conventional materials for cell immobilization, there is a rising trend toward polysaccharide-protein systems. This study focused on the immobilization of yeast cells () via a freeze-drying process.
View Article and Find Full Text PDFmSystems
December 2024
Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile.
Unlabelled: Hybridization between and resulted in the emergence of , a crucial yeast for lager fermentation. However, our understanding of hybridization success and hybrid vigor between these two species remains limited due to the scarcity of parental strains. Here, we explore hybridization success and the impact of hybridization on fermentation performance and volatile compound profiles in newly formed lager hybrids.
View Article and Find Full Text PDFMol Biol Evol
November 2024
Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA.
J Agric Food Chem
November 2024
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
The antioxidant dipeptides (Ala-His, AH; Thr-Tyr, TY; and Phe-Cys, FC) significantly enhanced the lager yeast tolerance of ethanol stress. The enhancement mechanisms were further elucidated through physiological responses and metabolomics analysis. The results indicated that antioxidant dipeptides significantly increased the lager yeast biomass and budding rate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!