The influence of larval competition on Brazilian Wolbachia-infected Aedes aegypti mosquitoes.

Parasit Vectors

Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, MG, Brazil.

Published: May 2016

Background: With field releases starting in Brazil, particular interest must be given to understanding how the endosymbiotic bacterium Wolbachia pipientis affects Aedes aegypti mosquitoes with a Brazilian genetic background. Currently, there is limited information on how the bacterium affects phenotypic traits such as larval development rate, metabolic reserves and morphometric parameters in Ae. aegypti. Here, we analyze for the first time, the effect of Wolbachia on these key phenotypes and consider how this might impact the potential of the bacterium as a disease control agent in Brazil.

Methods: We examined the influence of the wMel strain of Wolbachia in laboratory Ae. aegypti with a Brazilian genetic background, reared under different larval densities. Pupae formation was counted daily to assess differences in development rates. Levels of metabolic reserves and morphometric parameters were assessed in adults resulting from each larval condition.

Results: wMel infection led to more rapid larval development at higher densities for both males and females, with no effect under less crowded conditions in females. Infection also led to reduced body size at both high and low density, but not at intermediate density, although the scale of this difference was maintained regardless of larval density, in comparison to uninfected individuals. Wing shape also varied significantly between infected and uninfected mosquitoes due to larval density. Glycogen levels in uninfected mosquitoes decreased under higher larval density, but were consistently high with Wolbachia infection, regardless of larval density.

Conclusions: We demonstrate that the wMel Wolbachia strain can positively influence some important host fitness traits, and that this interaction is directly linked to the conditions in which the host is reared. Combined with previously published data, these results suggest that this Wolbachia strain could be successfully used as part of the Eliminate Dengue Program in Brazil.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869337PMC
http://dx.doi.org/10.1186/s13071-016-1559-5DOI Listing

Publication Analysis

Top Keywords

larval density
12
aedes aegypti
8
aegypti mosquitoes
8
brazilian genetic
8
genetic background
8
larval
8
larval development
8
metabolic reserves
8
reserves morphometric
8
morphometric parameters
8

Similar Publications

Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.

View Article and Find Full Text PDF

Long-term monitoring data on (Newman, 1838) (Coleoptera, Rutelidae) across the Azorean Islands.

Biodivers Data J

December 2024

University of the Azores, Biotechnology Centre of Azores (CBA), Faculty of Sciences and Technology, PT-9500-321, Ponta Delgada, Azores, Portugal University of the Azores, Biotechnology Centre of Azores (CBA), Faculty of Sciences and Technology, PT-9500-321 Ponta Delgada, Azores Portugal.

Background: The Japanese Beetle, Newman, 1838 (Coleoptera, Rutelidae), is a univoltine agricultural pest that poses a serious threat to various agricultural crops. For more than 16 years, the Azorean official authorities have implemented a Long-Term Ecological Research (LTER) programme that is crucial for understanding the dynamics of insect pests, such as the Japanese Beetle, and their impacts on agricultural ecosystems. The significance of this long-term monitoring extends beyond understanding the pest's life cycle.

View Article and Find Full Text PDF

Background: Members of the Anopheles gambiae complex are major malaria vectors in sub-Saharan Africa. Their larval stages inhabit a variety of aquatic habitats in which, under natural circumstances, they are preyed upon by different taxa of aquatic macroinvertebrate predators. Understanding the potential impact of predators on malaria vector larval population dynamics is important for enabling integrated local mosquito control programmes with a stronger emphasis on biocontrol approaches.

View Article and Find Full Text PDF

The effect of population density on the phenotype, metabolic and immunological adaptations in the cuticle of Spodoptera litura larvae.

Pest Manag Sci

January 2025

Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.

Background: Species that experience outbreaks and those that display density-dependent phase polymorphism demonstrate density-dependent prophylaxis (DDP) by increasing their immune investment in response to increasing densities. Despite this phenomenon, the mechanisms of DDP remain largely unexplored.

Results: Here, we showed that Spodoptera litura exhibited heightened cuticular melanization and enhanced cuticular immune responses when reared at higher population density.

View Article and Find Full Text PDF

The black soldier fly (Hermetia illucens) is a saprophagous insect known for bioconverting organic waste, potentially offering environmental benefits, such as contributing to waste reduction and nutrient cycling. The performance of larvae varies significantly with factors substrate moisture, larval density, and scale of production. Three experiments were conducted using a mix of spent mushroom substrate (SMS) and chicken feed (CF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!