Age-Related Decline in Natural IgM Function: Diversification and Selection of the B-1a Cell Pool with Age.

J Immunol

Center for Oncology and Cell Biology, Feinstein Institute for Medical Research, Hofstra Northwell School of Medicine, Manhasset, NY 11030; Department of Medicine, Hofstra Northwell School of Medicine, Manhasset, NY 11030; and Department of Molecular Medicine, Hofstra Northwell School of Medicine, Manhasset, NY 11030.

Published: May 2016

Streptococcus pneumoniae is the most common cause of pneumonia, which claims the lives of people over the age of 65 y seven times more frequently than those aged 5-49 y. B-1a cells provide immediate and essential protection from S. pneumoniae through production of natural Ig, which has minimal insertion of N-region additions added by the enzyme TdT. In experiments with SCID mice infected with S. pneumoniae, we found passive transfer of IgG-depleted serum from aged (18-24 mo old) mice had no effect whereas IgG-depleted serum from young (3 mo old) mice was protective. This suggests protective natural IgM changes with age. Using single cell PCR we found N-region addition, which is initially low in fetal-derived B-1a cell IgM developing in the absence of TdT, increased in 7- to 24-mo-old mice as compared with 3-mo-old mice. To determine the mechanism responsible for the age related change in B-1a cell IgM, we established a mixed chimera system in which mice were reconstituted with allotype-marked mature peritoneal B-1a cells and adult bone marrow cells. We demonstrated even in the presence of mature peritoneal B-1a cells, adult bone marrow contributed to the mature B-1a cell pool. More importantly, using this system we found over a 10-mo-period peritoneal B-1a cell IgM changed, showing the number of cells lacking N-region additions at both junctions fell from 49 to 29% of sequences. These results strongly suggest selection-induced skewing alters B-1a cell-derived natural Ab, which may in turn be responsible for the loss of natural IgM-mediated protection against pneumococcal infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4874569PMC
http://dx.doi.org/10.4049/jimmunol.1600073DOI Listing

Publication Analysis

Top Keywords

b-1a cell
20
b-1a cells
12
cell igm
12
peritoneal b-1a
12
b-1a
9
natural igm
8
cell pool
8
n-region additions
8
igg-depleted serum
8
mature peritoneal
8

Similar Publications

Sphingosine-1-phosphate receptor type 4 is critically involved in the regulation of peritoneal B-1 cell trafficking and distribution in vivo.

Eur J Immunol

December 2024

Experimental Surgical Research Laboratory, Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, Greifswald, Germany.

B-1 cells are crucially involved in immune defense and regulation of inflammation and autoimmunity. B-1 cells are predominantly located in the peritoneal and pleural cavities, although body cavity B-1 cells recirculate systemically under steady-state conditions. The chemokines CXCL12 and CXCL13 have been identified as the main regulators of peritoneal B-cell trafficking.

View Article and Find Full Text PDF
Article Synopsis
  • Biomarkers are essential for detecting diseases like cancer early on, with CD5 being a key protein linked to immune regulation and various diseases.
  • A new electrochemical immunosensor using advanced Ti/Au electrodes allows for ultra-sensitive detection of CD5 in blood serum, surpassing current methods.
  • This sensor demonstrates impressive sensitivity, with detection limits far better than traditional ELISA kits, showing promise for enhancing early cancer diagnosis and other medical uses.
View Article and Find Full Text PDF

During the perinatal period, the immune system sets the threshold to select either response or tolerance to environmental Ags, which leads to the potential to provide a lifetime of protection and health. B-1a B cells have been demonstrated to develop during this perinatal time window, showing a unique and restricted BCR repertoire, and these cells play a major role in natural Ab secretion and immune regulation. In the current study, we developed a highly efficient temporally controllable RAG2-based lymphoid lineage cell labeling and tracking system and applied this system to understand the biological properties and contribution of B-1a cells generated at distinct developmental periods to the adult B-1a compartments.

View Article and Find Full Text PDF
Article Synopsis
  • B-1a cells help fight infections and control swelling by releasing special proteins.
  • In sepsis, these cells move to the spleen, changing their abilities, which can cause problems.
  • A protein called Siglec-G helps keep B-1a cells in place, but in sepsis, a substance from neutrophils can break it down, and scientists found a special decoy that can protect Siglec-G and help B-1a cells stay healthier.
View Article and Find Full Text PDF

Post-transcriptional (re)programming of B lymphocyte development: From bench to bedside?

Adv Immunol

May 2024

Integrative Immunobiology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States. Electronic address:

Article Synopsis
  • Hematopoiesis is the process of producing blood and immune cells, which undergo significant changes from fetal development to adulthood, especially marked by the formation of long-term hematopoietic stem cells (HSCs).
  • This text examines the post-transcriptional differences between fetal liver HSCs and adult bone marrow HSCs, exploring how certain RNA-binding proteins can reprogram adult HSCs to resemble their fetal counterparts.
  • Specifically, it highlights the role of LIN28B and IGF2BP3 in promoting the development of particular immune cells, proposing potential clinical applications, such as in utero HSC transplantation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!