Osteoarthritis (OA) is a chronic disease of articular joints that leads to degeneration of both cartilage and subchondral bone. These degenerative changes are further aggravated by proinflammatory cytokines including IL-1β and TNF-α. Previously, we have reported that IL-3, a cytokine secreted by activated T cells, protects cartilage and bone damage in murine models of inflammatory and rheumatoid arthritis. However, how IL-3 protects cartilage degeneration is not yet known. In this study, we investigated the role of IL-3 on cartilage degeneration under both in vitro and in vivo conditions. We found that both mouse and human chondrocytes show strong expression of IL-3R at gene and protein levels. IL-3 increases the expression of mouse chondrocyte-specific genes, Sox9 and collagen type IIa, which were downregulated by IL-1β. Moreover, IL-3 downregulated IL-1β- and TNF-α-induced expression of matrix metalloproteinases in both mouse and human chondrocytes. Interestingly, IL-3 reduces the degeneration of articular cartilage and subchondral bone microarchitecture in a mouse model of human OA. Moreover, IL-3 showed the preventive and therapeutic effects on cartilage degeneration induced by IL-1β in micromass pellet cultures of human mesenchymal stem cells. Thus, to our knowledge, we provide the first evidence that IL-3 has therapeutic potential in amelioration of degeneration of articular cartilage and subchondral bone microarchitecture associated with OA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1500907 | DOI Listing |
Theranostics
January 2025
Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
Osteoarthritis (OA) is a common joint disease characterized by cartilage degeneration. It can cause severe pain, deformity and even amputation risk. However, existing clinical treatment methods for cartilage repair present certain deficiencies.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA.
Background: Anterior cruciate ligament (ACL) injury often leads to posttraumatic osteoarthritis (PTOA), despite ACL reconstruction (ACLR). Medial meniscal extrusion (MME) is implicated in PTOA progression but remains understudied after ACL injury and ACLR.
Hypothesis/purpose: It was hypothesized that MME would increase longitudinally after ACL injury and ACLR, with greater changes in the ipsilateral knee compared with the contralateral knee, leading to cartilage degeneration.
ACS Biomater Sci Eng
January 2025
Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, PR China.
Oxidative stress induced by reactive oxygen species (ROS) can adversely affect tissue repair, whereas endowing biomaterials with antioxidant activity can improve the in vivo microenvironment, thereby promoting angiogenesis and osteogenesis. Accordingly, this study utilized epigallocatechin-3-gallate (EGCG), a material known for its reducing properties, oxidative self-polymerization capability, and strong binding characteristics, to modify a bioactive core-shell fibrous membrane (10RP-PG). Compared to the 10RP-PG fibrous membrane, the EGCG-modified fibrous membrane (E/10RP-PG) exhibited superior hydrophilicity, excellent cell adhesion, and compatibility.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People's Republic of China.
Purpose: Intervertebral disc degeneration (IDD) is a leading cause of low back pain, and developing new molecular drugs and targets for IDD is a new direction for future treatment strategies. The aim of this study is to investigate the effects and mechanisms of tomatidine in ameliorating lumbar IDD.
Methods: Nucleus pulposus cells (NPCs) exposed to lipopolysaccharides were used as an in vitro model to investigate changes in the expression of extracellular matrix components and associated signaling pathway molecules.
Sci Rep
December 2024
Xinjiang Production and Construction Corps 13th division Red Star Hospital, Xinjiang Autonomous Region, 19 Qianjin East Road, Yizhou District, Xinjiang, P.R. China.
Iron overload (IO) was considered to be a risk factor for cartilage degradation in knee osteoarthritis (KOA) advancement. However, few drugs were found to improve cartilage degeneration by alleviating multiple cell death induced by the impaired iron level of the knee joints. We aimed to elucidate that Arctiin (ARC) plays a role in managing KOA caused by accumulated iron levels by restoring chondrocyte apoptosis and ferroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!