Herein, on the basis of the alkaline phosphate (ALP) induced reaction, a simultaneous photoelectrochemical (PEC) and visualized immunoassay has been established for the detection of β-human chorionic gonadotrophin (β-HCG). Specifically, in the proposed system, ALP stimulated the oxidative hydrolyzing transformation of 5-bromo-4-chloro-3-indoyl phosphate (BCIP) to an indigo precipitation, generating an insulating layer that impeded the interfacial mass and electron transfer and thus the photocurrent production. Meanwhile, a visualized detection could be performed according to the change of color intensity. Upon proper experimental conditions, the protocol possessed a detection range of 0.5-1000IU/L with a detection limit of (0.20±0.011)IU/L toward β-HCG. With high sensitivity and specificity, this work presents the first general protocol for simultaneous PEC and visualized detection, which could be easily extended to addressing numerous other targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2016.04.103 | DOI Listing |
Carbohydr Polym
March 2025
School of Environmental and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:
Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.
View Article and Find Full Text PDFAnal Chem
January 2025
Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
Comprehending the biosensing mechanism of the biosensor interface is crucial for sensor development, yet accurately reflecting interfacial interactions within actual detection environments remains an unsolved challenge. An operando photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) biosensing platform was developed, capable of simultaneously capturing photocurrent and SERS signals, allowing operando characterization of the interfacial biosensing behavior. Porphyrin-based MOFs (Zr-MOF) served as bifunctional nanotags, providing a photocurrent and stable Raman signal output under 532 nm laser irradiation.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China. Electronic address:
Abnormal levels of thrombin may be associated with various diseases, such as thrombosis and hemorrhagic diseases, making precise detection of thrombin particularly important. Dual signal detection is a method that enhances detection sensitivity and specificity by simultaneously utilizing two different signals. Its primary advantages include improving detection accuracy and reducing false positive rates, making it particularly suitable for clinical analysis and diagnostics.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China.
Nanozymes open up new avenues for amplifying signals in photoelectrochemical (PEC) biosensing, which are yet limited by the generated small-molecule signal reporters. Herein, a multifunctional nanoenzyme of Pt NPs/CoSAs@NC consisting of Co single atoms on N-doped porous carbon decorated with Pt nanoparticles is successfully synthesized for cascade catalytic polymerization of dopamine for constructing a highly sensitive photocurrent-polarity-switching PEC biosensing platform. Taking protein tyrosine phosphatase 1B (PTP1B) as a target model, Pt NPs/CoSAs@NC nanoenzymes are linked to magnetic microspheres via phosphorylated peptides.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, People's Republic of China. Electronic address:
Heteroatom doping is a promising strategy for optimizing the photocatalytic activity of semiconductors. However, relying solely on single-element doping often poses challenges in modulating the capabilities of semiconductors. Herein, we adopt a strategy of simultaneously modifying ZnInS with the double non-metallic elements nitrogen (N) and oxygen (O) to form (N, O)-ZnInS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!