Antineoplastic drugs used in chemotherapy were detected in aquatic environment: despite the very low concentrations (ng L(-1) to ug L(-1)), due to their potent mechanism of action they could have adverse effects on non-target aquatic organisms particularly under chronic exposure. Cisplatin (CDDP) is one of the most effective anticancer drug currently in use but information on its ecotoxicological effects is very limited. In this study, Mytilus galloprovincialis was used to investigate the toxic effects related to CDDP exposure. Mussels were exposed to cisplatin (100 ng L(-1)) for 14 days: antioxidant (superoxide dismutase, catalase, total and selenium-dependent glutathione peroxidase) and phase II (glutathione-S-transferase) enzymes activities, oxidative damage (lipid peroxidation), genotoxicity (DNA damage) and neurotoxicity (acetylcholinesterase) was evaluated. Results indicate that CDDP at tested concentration induce changes in the antioxidant capacity, oxidative stress in target organs (digestive gland and gills) as well as DNA damage in mussel hemocytes and neurotoxicity representing a risk for non-target organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2016.05.004 | DOI Listing |
Background: The autophagy lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are key proteostasis mechanisms in cells, which are dysfunctional in AD and linked to protein aggregation and neuronal death. Autophagy is over activated in Alzheimer's disease brain whereas UPS is severely impaired. Activating autophagy has received most attention, however recent evidence suggests that UPS can clear aggregate proteins and a potential therapeutic target for AD and protein misfolding diseases.
View Article and Find Full Text PDFBackground: The key advantage of active immunization is the induction of sustained, polyclonal antibody responses that are readily boosted by occasional immunizations. Recent clinical trial outcomes for monoclonal antibodies lecanemab and donanemab, establish the relevance of targeting pathological Abeta for clearing amyloid plaques in Alzheimer's disease. ACI-24.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The University of Texas Health Science Center at Houston, Houston, TX, USA.
Background: Developing drugs for treating Alzheimer's disease (AD) has been extremely challenging and costly due to limited knowledge on underlying biological mechanisms and therapeutic targets. Repurposing drugs or their combination has shown potential in accelerating drug development due to the reduced drug toxicity while targeting multiple pathologies.
Method: To address the challenge in AD drug development, we developed a multi-task machine learning pipeline to integrate a comprehensive knowledge graph on biological/pharmacological interactions and multi-level evidence on drug efficacy, to identify repurposable drugs and their combination candidates RESULT: Using the drug embedding from the heterogeneous graph representation model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, mechanistic efficacy in preclinical models, population-based treatment effect, and Phase 2/3 clinical trials.
Background: Impaired Aβ clearance plays a key role in the common, late-onset AD. Anti-Aβ immunotherapies are controversial, in part because of high rates of serious side effects including edema, microhemorrhages, and siderosis, highlighting the importance of the development of alternative Aβ clearance strategy. Here, we introduce a bioinspired nanoparticle named MG-PE3 crossing the human blood-brain barrier (BBB) and clearing Aβ with no adverse effect.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Edith Cowan University, Perth, Western Australia, Australia.
Background: Accumulation of amyloid beta 42 (Aβ42) senile plaques is the most critical event leading to Alzheimer's disease (AD). Currently approved drugs for AD have not been able to effectively modify the disease. This has caused increasing research interests in health beneficial nutritious plant foods as viable alternative therapy to prevent or manage AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!