Purpose: This study aimed to evaluate peri-implant bone reactions to dynamic and static loads in a rat model.
Materials And Methods: Two cylindrical titanium implants were placed in the left tibia diaphysis of 39 rats, which were divided into three groups: static load for 4 weeks (S4), static load for 8 weeks (S8), and static load for 4 weeks followed by dynamic load for 4 weeks (S4D4). All implants received a mechanical lateral load. After the experiment, the implants were extracted to determine the attachment strength around the bone and implant. The new bone formation and bone-to-implant contact were measured using plain and polarized light microscopy.
Results: Histologic tissue analysis revealed good contact between the bone and implant, and new bone formation around all implants. The S4D4 group had the greatest attachment strength, new bone formation, and complex collagen fiber orientation in the new bone tissue, compared with the other groups. No statistically significant differences in bone-to-implant contact were observed among the three groups.
Conclusions: Applying dynamic and static loads to osseointegrated implants increased the amplification of new bone. The attachment strength was significantly improved when dynamic load was used for 4 weeks, compared with when static load was used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.11607/jomi.4372 | DOI Listing |
Acta Bioeng Biomech
June 2024
3Med Coach, Non-public Continuing Education Institution, Kraków, Poland.
: The aim of this work was to assess the effect of a conservative therapeutic intervention on the changes in the foot load distribution in people with femoroacetabular impingement (FAI) syndrome practising long-distance running. : The study involved 44 men, aged 30 to 50 years, practising long-distance running. Two rounds of tests were conducted in the Laboratory of Biokinetics of the AWF in Kraków.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
January 2025
Department of Orthopedics and Traumatology, Izmir Bozyaka Education and Research Hospital, Izmir, Turkey.
This study introduces a novel anchor-type proximal femoral nail (AT-PFN) to improve the bone-fixation integrity over the standard screw-type nail (SST-PFN). Quasi-static incremental cyclic load test was performed to investigate load-displacement, cumulative deformation energy, time-strain, and backbone curves. The finite element analysis (FEA) was implemented to identify the stress and strain distributions.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Industrial Engineering Department, University of Rome Tor Vergata, 00133 Rome, Italy.
The mechanical behavior of AA6082 Kelvin cell foams under compressive tests has been investigated in this work. The lost-PLA replication technique, a simple and cheap technique, has been adopted as the production method. Six Al alloy samples have been made and successively subjected to compressive tests in order to examine the mechanical response and the repeatability too.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Isfahan 817467344, Iran.
Friction stir spot welding (FSSW) technology relies on the generation of frictional heat during the rotation of the welding tool in contact with the workpiece as well as the stirring effect of the tool pin to produce solid-state spot joints, especially for lightweight materials. Although FSSW offers significant advantages over traditional fusion welding, the oxidation of the interfacial bond line remains one of the most challenging issues, affecting the quality and strength of the joint under both static and cyclic loading conditions. In this experimental study, inert argon gas was employed to surround the joint, aiming to prevent or minimize the formation of the interfacial oxides.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia.
In modern ICs, sub-threshold voltage management plays a significant role due to its perspective on energy efficiency and speed performance. Level shifters (LSs) play a critical role in signal exchange among multiple voltage domains by ensuring signal integrity and the reliable operation of ICs. In this article, a Pass-Transistor-Enabled Split Input Voltage Level Shifter (PVLS) is designed for area, delay, and power-efficient applications with a wide voltage conversion range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!