Single-Molecule Force Spectroscopy Studies of APOBEC3A-Single-Stranded DNA Complexes.

Biochemistry

Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6000, United States.

Published: June 2016

APOBEC3A (A3A) inhibits the replication of a range of viruses and transposons and might also play a role in carcinogenesis. It is a single-domain deaminase enzyme that interacts with single-stranded DNA (ssDNA) and converts cytidines to uridines within specific trinucleotide contexts. Although there is abundant information that describes the potential biological activities of A3A, the interplay between binding ssDNA and sequence-specific deaminase activity remains controversial. Using a single-molecule atomic force microscopy spectroscopy approach developed by Shlyakhtenko et al. [(2015) Sci. Rep. 5, 15648], we determine the stability of A3A in complex with different ssDNA sequences. We found that the strength of the complex is sequence-dependent, with more stable complexes formed with deaminase-specific sequences. A correlation between the deaminase activity of A3A and the complex strength was identified. The ssDNA binding properties of A3A and those for A3G are also compared and discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4932870PMC
http://dx.doi.org/10.1021/acs.biochem.6b00214DOI Listing

Publication Analysis

Top Keywords

deaminase activity
8
a3a complex
8
a3a
5
single-molecule force
4
force spectroscopy
4
spectroscopy studies
4
studies apobec3a-single-stranded
4
apobec3a-single-stranded dna
4
dna complexes
4
complexes apobec3a
4

Similar Publications

Aptazyme-directed A-to-I RNA editing.

Methods Enzymol

January 2025

Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, P.R. China. Electronic address:

As a promising therapeutic approach, the RNA editing process can correct pathogenic mutations and is reversible and tunable, without permanently altering the genome. RNA editing mediated by human ADAR proteins offers unique advantages, including high specificity and low immunogenicity. Compared to CRISPR-based gene editing techniques, RNA editing events are temporary, which can reduce the risk of long-term unintended side effects, making off-target edits less concerning than DNA-targeting methods.

View Article and Find Full Text PDF

Structural analysis of human ADAR2-RNA complexes by X-ray crystallography.

Methods Enzymol

January 2025

Department of Chemistry, University of California, Davis, CA, United States; Department of Molecular and Cellular Biology, University of California, Davis, CA, United States. Electronic address:

Adenosine deaminases acting on RNAs (ADARs) are a class of RNA editing enzymes found in metazoa that catalyze the hydrolytic deamination of adenosine to inosine in duplexed RNA. Inosine is a nucleotide that can base pair with cytidine, therefore, inosine is interpreted by cellular processes as guanosine. ADARs are functionally important in RNA recoding events, RNA structure modulation, innate immunity, and can be harnessed for therapeutically-driven base editing to treat genetic disorders.

View Article and Find Full Text PDF

Saccharomyces cerevisiae, a model eukaryotic organism with a rich history in research and industry, has become a pivotal tool for studying Adenosine Deaminase Acting on RNA (ADAR) enzymes despite lacking these enzymes endogenously. This chapter reviews the diverse methodologies harnessed using yeast to elucidate ADAR structure and function, emphasizing its role in advancing our understanding of RNA editing. Initially, Saccharomyces cerevisiae was instrumental in the high-yield purification of ADARs, addressing challenges associated with enzyme stability and activity in other systems.

View Article and Find Full Text PDF

Advances in RNA editing in hematopoiesis and associated malignancies.

Blood

January 2025

State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Center for Stem Cell Medicine,, Tianjin, China.

Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the Adenosine Deaminase Acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs to affect their functions.

View Article and Find Full Text PDF

Integration of human papillomavirus (HPV) into the host genome drives HPV-positive head and neck squamous cell carcinoma (HPV HNSCC). Whole-genome sequencing of 51 tumors revealed intratumor heterogeneity of HPV integration, with 44% of breakpoints subclonal, and a biased distribution of integration breakpoints across the HPV genome. Four HPV physical states were identified, with at least 49% of tumors progressing without integration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!