EnABLing microprocessor for apoptosis.

Mol Cell Oncol

Department of Medicine, Division of Hematology-Oncology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA.

Published: December 2015

The Microprocessor complex consisting of DROSHA (a type III ribonuclease) and DGCR8 (DiGeorge syndrome critical region gene 8-encoded RNA binding protein) recognizes and cleaves the precursor microRNA hairpin (pre-miRNA) from the primary microRNA transcript (pri-miRNA). The Abelson tyrosine kinase 1 (ABL) phosphorylates DGCR8 to stimulate the cleavage of a subset of pro-apoptotic pri-miRNAs, thus expanding the nuclear functions of ABL to include regulation of RNA processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4866609PMC
http://dx.doi.org/10.1080/23723556.2015.1081860DOI Listing

Publication Analysis

Top Keywords

enabling microprocessor
4
microprocessor apoptosis
4
apoptosis microprocessor
4
microprocessor complex
4
complex consisting
4
consisting drosha
4
drosha type
4
type iii
4
iii ribonuclease
4
ribonuclease dgcr8
4

Similar Publications

The novel coronavirus (COVID-19) has affected more than two million people of the world, and far social distancing and segregated lifestyle have to be adopted as a common solution in recent years. To solve the problem of sanitation control and epidemic prevention in public places, in this paper, an intelligent disinfection control system based on the STM32 single-chip microprocessor was designed to realize intelligent closed-loop disinfection in local public places such as public toilets. The proposed system comprises seven modules: image acquisition, spraying control, disinfectant liquid level control, access control, voice broadcast, system display, and data storage.

View Article and Find Full Text PDF

The rising popularity of wearable activity tracking devices can be attributed to their capacity for gathering and analysing ambient data, which finds utility across numerous applications. In this study, a wearable activity tracking device is developed using the BBC micro:bit development board to identify basic bachata dance steps. Initially, a pair of smart ankle bracelets is crafted, employing the BBC micro:bit board equipped with a built-in accelerometer sensor and a Bluetooth module for transmitting accelerometer data to smartphones.

View Article and Find Full Text PDF

Computer Vision-Based Gait Recognition on the Edge: A Survey on Feature Representations, Models, and Architectures.

J Imaging

December 2024

Department of Mechatronics Engineering, Universidad Católica Boliviana "San Pablo", La Paz 4807, Bolivia.

Computer vision-based gait recognition (CVGR) is a technology that has gained considerable attention in recent years due to its non-invasive, unobtrusive, and difficult-to-conceal nature. Beyond its applications in biometrics, CVGR holds significant potential for healthcare and human-computer interaction. Current CVGR systems often transmit collected data to a cloud server for machine learning-based gait pattern recognition.

View Article and Find Full Text PDF

In order to identify carcinoembryonic antigen (CEA) in serum samples, an innovative smartphone-based, label-free electrochemical immunosensor was created without the need for additional labels or markers. This technology presents a viable method for on-site cancer diagnostics. The novel smartphone-integrated, label-free immunosensing platform was constructed by nanostructured materials that utilize the layer-by-layer (LBL) assembly technique, allowing for meticulous control over the interface.

View Article and Find Full Text PDF

A New Caffeine Detection Method Using a Highly Multiplexed Smartphone-Based Spectrometer.

Biosensors (Basel)

December 2024

Zhejiang University-University of Illinois Urbana-Champaign Institute, Zhejiang University, Haining 314400, China.

Smartphones equipped with highly integrated sensors are increasingly being recognized as powerful tools for rapid on-site testing. Here, we propose a low-cost, portable, and highly multiplexed smartphone-based spectrometer capable of collecting three types of spectra-transmission, reflection, and fluorescence-by simply replacing the optical fiber attached to the housing. Spectral analysis is performed directly on the smartphone using a custom-developed app.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!