Previous work in our laboratory demonstrated that in-utero exposure to a mixture of the phytoestrogen Genistein (GEN), and plasticizer DEHP, induces short- and long-term alterations in testicular gene and protein expression different from individual exposures. These studies identified fetal and adult Leydig cells as sensitive targets for low dose endocrine disruptor (ED) mixtures. To further investigate the direct effects and mechanisms of toxicity of GEN and DEHP, MA-10 mouse tumor Leydig cells were exposed in-vitro to varying concentrations of GEN and MEHP, the principal bioactive metabolite of DEHP. Combined 10μM GEN+10μM MEHP had a stimulatory effect on basal progesterone production. Consistent with increased androgenicity, the mRNA of steroidogenic and cholesterol mediators Star, Cyp11a, Srb1 and Hsl, as well as upstream orphan nuclear receptors Nr2f2 and Sf1 were all significantly increased uniquely in the mixture treatment group. Insl3, a sensitive marker of Leydig endocrine disruption and cell function, was significantly decreased by combined GEN+MEHP. Lipid analysis by high-performance thin layer chromatography demonstrated the ability of combined 10μM combined GEN+MEHP, but not individual exposures, to increase levels of several neutral lipids and phospholipid classes, indicating a generalized deregulation of lipid homeostasis. Further investigation by qPCR analysis revealed a concomitant increase in cholesterol (Hmgcoa) and phospholipid (Srebp1c, Fasn) mediator mRNAs, suggesting the possible involvement of upstream LXRα agonism. These results suggest a deregulation of MA-10 Leydig function in response to a combination of GEN+MEHP. We propose a working model for GEN+MEHP doses relevant to human exposure involving LXR agonism and activation of other transcription factors. Taken more broadly, this research highlights the importance of assessing the impact of ED mixtures in multiple toxicological models across a range of environmentally relevant doses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2016.05.008 | DOI Listing |
Biol Reprod
November 2024
Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
Bisphenols are a family of chemicals used in the manufacture of consumer products containing polycarbonate plastics and epoxy resins. Studies have shown that exposure to bisphenol A (BPA) may disrupt steroidogenesis and induce adverse effects on male and female reproduction, but little is known about BPA replacements. We determined the effects of six bisphenols on the steroidogenic function of MA-10 Leydig cells and KGN granulosa cells by measuring the levels of progesterone and estradiol produced by these cells as well as the expression of transcripts involved in steroid and cholesterol biosynthesis.
View Article and Find Full Text PDFCancer Genomics Proteomics
October 2024
Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C.
Background/aim: Fibroblast growth factor 9 (FGF9) is a member of the human FGF family known for its pivotal roles in various biological processes, such as cell proliferation, tissue repair, and male sex determination including testis formation. Cordycepin, a bioactive compound found in Cordyceps sinensis, exhibits potent antitumor effects by triggering apoptosis and/or autophagy pathways. Our research has unveiled that FGF9 promotes proliferation and tumorigenesis in MA-10 mouse Leydig tumor cells, as the phenomena are effectively countered by cordycepin through apoptosis induction.
View Article and Find Full Text PDFMol Cell Endocrinol
January 2025
Department of Urology, Yamaguchi University School of Medicine, Ube, Japan.
Heat shock response is characterized by the induction of heat shock proteins (HSPs) or molecular chaperones that maintain protein homeostasis. Heat shock transcription factor 1 (HSF1) plays a central role in heat shock response in mammalian cells. To investigate the impact of the heat shock response mechanism on steroidogenesis, we generated MA-10 mouse Leydig tumor cells deficient in HSF1 using CRISPR-Cas9 genome editing.
View Article and Find Full Text PDFJ Xenobiot
September 2024
109 Greene Hall, Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
Leydig cells (LCs) in the testes produce the male sex hormone testosterone (T). Several xenobiotics, including clinical drugs, supplements, and environmental chemicals, are known to disrupt T homeostasis. Notably, some of these xenobiotics are known to activate the pregnane X receptor (PXR), a ligand-dependent nuclear receptor.
View Article and Find Full Text PDFMol Cell Endocrinol
December 2024
Biology Department, Université de Moncton, Moncton, New Brunswick, Canada, E1A 3E9. Electronic address:
Leydig cells are the main testosterone-producing cells in males. During androgen synthesis, cholesterol enters the mitochondria via the STAR protein and is converted into pregnenolone by the CYP11A1 enzyme. This steroid is then exported from the mitochondria to be metabolized to progesterone by the HSD3B1 enzyme in the endoplasmic reticulum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!