Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The current work presents a synthesis route based on the reductive amination of 2,3-dialdehyde cellulose beads with diamines to render micrometer-sized beads with increased specific surface area (SSA) and porosity in the mesoporous range. Specifically, the influence of the reductive amination of 2,3-dialdehyde cellulose (DAC) using aliphatic and aromatic tethered mono- and diamines on bead microstructure was investigated. Aliphatic and aromatic tethered monoamines were found to have limited utility for producing porous beads whereas the introduction of diamines provided beads with a porous texture and an SSA increasing from <1 to >30 m(2)/g. Both aliphatic and aromatic diamines were found to be useful in producing porous beads having a pore size distribution range of 10 to 100 nm, as verified by N2 gas adsorption and mercury intrusion porosimetry analyses. The true density of the functionalized DAC beads decreased to an average of about 1.36 g/cm(3) as compared to 1.48 g/cm(3) for the unfunctionalized, fully oxidized DAC beads. The total porosity of the beads was, according to mercury porosimetry, in the range of 54-64%. Reductive amination with 1,7-diaminoheptane provided beads that were stable under alkaline conditions (1 M NaOH). It was concluded that the introduction of tethered diamines into DAC beads is a facile method for producing mesoporous beads.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.6b01288 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!