Background: Calcitriol (vitamin D) supplementation has been proposed for therapeutical use in vascular diseases due to its immunomodulatory activity, preventing inflammation and promoting angiogenesis. In the present study, we hypothesised whether calcitriol downregulates pro-inflammatory gene expression without affecting angiogenesis and anti-inflammatory gene expression in LPS-induced endothelial cells.

Method: In order to evaluate the effect of calcitriol in suppressing inflammatory gene expression in the endothelium, endothelial cells were exposed to the physiological concentration of calcitriol followed by stimulation with lipopolysaccharide (LPS). Gene expression of interleukin (IL)-1β, Transforming Growth Factor (TGF)-β, Human β-defensin (HBD)-2, angiogenin (ANG) and cathelicidin (LL-37) were quantified by quantitative polymerase chain reaction.

Results: The results from six independent experiments conducted in duplicate, showed that calcitriol decreased IL-1β (p < 0.01) and HBD-2 expression (p < 0.01) when compared to non-treated cells. However, calcitriol treatment had no effect on TGF-β, ANG and LL-37 gene expression.

Conclusion: Calcitriol prevents inflammatory gene expression, but does not affect expression of angiogenic genes in endothelial cells, which suggest the potential use of calcitriol to prevent endothelial activation through the downregulation of IL-1β and HBD-2.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09674845.2016.1162376DOI Listing

Publication Analysis

Top Keywords

gene expression
24
inflammatory gene
12
endothelial cells
12
calcitriol
9
calcitriol prevents
8
prevents inflammatory
8
expression
8
gene
7
endothelial
5
expression macrovascular
4

Similar Publications

Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.

View Article and Find Full Text PDF

Introduction/objective: Plants and their bioactive compounds play a crucial role in the pharmaceutical industry for treating cancer. To date, the cytotoxic and antiproliferative effects of Hypericum perforatum methanol extract on human thyroid cancer cell lines have not been thoroughly explored. The present study aimed to assess the potential anti-cancer effects of HPME on human thyroid cancer and investigate its potential therapeutic benefits.

View Article and Find Full Text PDF

ECM Modifications Driven by Age and Metabolic Stress Directly Promote the Vascular Smooth Muscle Cell Osteogenic Processes.

Arterioscler Thromb Vasc Biol

January 2025

British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).

Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.

Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.

View Article and Find Full Text PDF

Ellagitannins from Pomegranate Flower with Whitening and Anti-skin Photoaging Effect.

Chem Biodivers

January 2025

Yatsen Global Innovation R&D Center, Yatsen Global Innovation R&D Center, No. 11 Building, No. 210, Wenshui Road, Jingan District, Shanghai, CHINA.

A new depside glucoside rosarugoside E (1), together with four known compounds punicalagin (2), corilagin (3), granatin B (4) and ellagic acid (5) were isolated from the ethanol extract of pomegranate (Punica granatum L.) flower. Their structures were identified based on careful analysis of various spectral data including UV, IR, HR-ESI-MS, 1D and 2D NMR.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is increasingly thought to be a multifactorial disease in which sustained gut inflammation serves as a continued source of inflammatory mediators driving degenerative processes at distant sites such as joints. The objective of this study was to use the equine model of naturally occurring obesity associated OA to compare the fecal microbiome in OA and health and correlate those findings to differential gene expression synovial fluid (SF) cells, circulating leukocytes and cytokine levels (plasma, SF) towards improved understanding of the interplay between microbiome and immune transcriptome in OA pathophysiology.

Methods: Feces, peripheral blood mononuclear cells (PBMCs), and SF cells were isolated from healthy skeletally mature horses (n=12; 6 males, 6 females) and those with OA (n=6, 2 females, 4 males).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!