Carbamylation (carbamoylation) is a post-translational modification resulting from the nonenzymatic reaction between isocyanic acid and free functional groups of proteins, in particular with the free amino groups. This reaction alters structural and functional properties of proteins and results in faster aging of proteins. Urea present in the body can be transformed into cyanate and its more reactive form, isocyanic acid. High concentration of urea is associated with some diseases, especially with chronic renal failure and atherosclerosis. In human tissues, urea and cyanate are in equilibrium in aqueous solutions. Surprisingly, concentration of isocyanate in the body is much lower than it would appear from the kinetic parameters of urea decomposition. The low concentration of isocyanic acid results from its high reactivity and short half-life. In this review we describe the biochemical mechanism of carbamylation of proteins and free amino acids. We summarize the literature data for carbamylation of hemoglobin, lipoproteins, albumin, membrane proteins and erythropoietin in chronic renal failure. In summary, the carbamylation of proteins may have a negative impact on their biological activity and may contribute to the deterioration of patients with chronic renal failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5604/17322693.1202189 | DOI Listing |
J Phys Chem A
August 2024
Department of Chemistry, Physics & Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States.
Molecules
June 2024
College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
Background: Lincomycin (LIN) is extensively used for treating diseases in livestock and promoting growth in food animal farming, and it is frequently found in both the environment and in food products. Currently, most of the methods for detecting lincomycin either lack sensitivity and precision or require the use of costly equipment such as mass spectrometers.
Result: In this study, we developed a reliable high-performance liquid chromatography-ultraviolet detection (HPLC-UVD) method and used it to detect LIN residue in 11 types of matrices (pig liver and muscle; chicken kidney and liver; cow fat, liver and milk; goat muscle, liver and milk; and eggs) for the first time.
J Hazard Mater
July 2024
Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA. Electronic address:
Methyl isocyanate (MIC) is a toxic chemical found in many commercial, industrial, and agricultural processes, and was the primary chemical involved in the Bhopal, India disaster of 1984. The atmospheric environmental chemical reactivity of MIC is relatively unknown with only proposed reaction channels, mainly involving OH-initiated reactions. The gas-phase degradation reaction pathways of MIC and its primary product, formyl isocyanate (FIC), were investigated with quantum mechanical (QM) calculations to assess the fate of the toxic chemical and its primary transformation products.
View Article and Find Full Text PDFSmall
August 2024
Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China.
Organometal halide perovskite solar cells (PSCs) have received great attention owing to a rapid increase in power conversion efficiency (PCE) over the last decade. However, the deficit of long-term stability is a major obstacle to the implementation of PSCs in commercialization. The defects in perovskite films are considered as one of the primary causes.
View Article and Find Full Text PDFJ Am Chem Soc
February 2024
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
Magnesium is an abundant metal element in space, and magnesium chemistry has vital importance in the evolution of interstellar medium (ISM) and circumstellar regions, such as the asymptotic giant branch star IRC+10216 where a variety of Mg compounds bearing H, C, N, and O have been detected and proposed as the important components in the gas-phase molecular clouds and solid-state dust grains. Herein, we report the formation and infrared spectroscopic characterization of the Mg-bearing molecules HMg, [Mg, N, C], [Mg, H, N, C], [Mg, N, C, O], and [Mg, H, N, C, O] from the reactions of Mg/Mg and the prebiotic isocyanic acid (HNCO) in the solid neon matrix. Based on their thermal diffusion and photochemical behavior, a complex reactivity landscape involving association, decomposition, and isomerization reactions of these Mg-bearing molecules is developed, which can not only help understand the chemical processes of the magnesium (iso)cyanides in astrochemistry but also provide implications on the presence of magnesium (iso)cyanates in the ISM and the chemical model for the dust grain surface reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!