Adsorption of diclofenac onto organoclays: Effects of surfactant and environmental (pH and temperature) conditions.

J Hazard Mater

Institut des Sciences de la Terre d'Orléans, UMR 7327, CNRS-Université d'Orléans, 1A Rue de la Férollerie, 45071 Orléans Cedex 2, France. Electronic address:

Published: February 2017

Among pharmaceutical products (PPs) recalcitrant to water treatments, diclofenac shows a high toxicity and remains at high concentration in natural aquatic environments. The aim of this study concerns the understanding of the adsorption mechanism of this anionic PP onto two organoclays prepared with two long-alkyl chains cationic surfactants showing different chemical nature for various experimental pH and temperature conditions. The experimental data obtained by a set of complementary techniques (X-ray diffraction, elemental analyses, gas chromatography coupled with mass spectrometry, and Fourier transform infrared spectroscopy) and the use of Langmuir, Freundlich and Dubinin-Radushkevish equation models, reveal that organoclays show a good affinity to diclofenac which is enhanced as the temperature is under 35°C and for pH above 4.5 (i.e. >pKa of diclofenac) while the chemical nature of surfactant appears to play a minor role. The thermodynamic parameters derived from the fitting procedure point out the strong electrostatic interaction with organic cations adsorbed within the interlayer space in the organoclays for the adsorption of diclofenac. This study stress out the application of organoclays for the adsorption of a recalcitrant PPs in numerous aquatic compartments that can be used as a complement with activated carbon for waste water treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2016.05.001DOI Listing

Publication Analysis

Top Keywords

adsorption diclofenac
8
temperature conditions
8
chemical nature
8
organoclays adsorption
8
organoclays
5
adsorption
4
diclofenac organoclays
4
organoclays effects
4
effects surfactant
4
surfactant environmental
4

Similar Publications

Emerging contaminants are a matter of growing concern for environmental and human health and safety, requiring efficient and affordable sensing platforms. Laser-induced graphene (LIG) is a novel material with a 3D porous graphene structure that can be fabricated in a simple one-step fabrication process. However, most LIG-based works in electrochemical sensors are limited to polyimide (PI)-based platforms, thus limiting the purview of properties of LIG dependent on the substrate-laser interaction.

View Article and Find Full Text PDF

Diclofenac Removal by Alkylammonium Clay Minerals Prepared over Microwave Heating.

ACS Omega

December 2024

Universidade Federal da Paraíba, Núcleo de Pesquisa e Extensão - Laboratório de Combustíveis e Materiais (NPE - LACOM), Cidade Universitária s/n - Campus I, 58051-900 João Pessoa, PB, Brazil.

Diclofenac is an emerging contaminant widely detected in water and has had adverse effects on the biota. In this study, the adsorbents were prepared by reacting tetradecyl-(C), hexadecyl-(C), and octadecyltrimethylammonium (C) bromides with sodium vermiculite (Na-Ver) and used for the removal of the first time for diclofenac sodium from aqueous solution. Synthesis was carried out in a microwave-assisted reactor operating at 50 °C for 5 min, using proportions of organic salts in 100 and 200% of the phyllosilicate cation exchange capacity.

View Article and Find Full Text PDF

This study extends a previously developed competitive modeling approach for predicting the adsorption of organic micropollutants (OMPs) on powdered activated carbon (PAC) in full-scale advanced wastewater treatment. The approach incorporates adsorption analysis for organic matter fractionation, assumes pseudo-first order kinetics and differentiates between fresh and partially loaded PAC through fraction segregation. Validation through full-scale measurement campaigns reveals successful model predictions of OMP removal, underestimating, however, diclofenac removals by 15-20%.

View Article and Find Full Text PDF

The contamination of the natural environment by xenobiotics and emerging contaminants, including pharmaceuticals, poses significant risks to ecosystems and human health. Among these contaminants, hormones and pharmaceutical compounds are particularly concerning due to their persistence and potential biological effects even at low concentrations. In this study, we investigated the efficacy of poly-amino-β-cyclodextrin (PA-β-CD) microparticles in adsorbing and reducing specific xenobiotics and pharmaceuticals from aqueous solutions.

View Article and Find Full Text PDF

This article reports the obtention of a new gellan-based hydrogel linked with Fe and loaded with a natural micro/nanostructured carbon designed as a contaminant's removal from wastewater. Hydrogels are known for their water-retaining properties, high binding capacity, and eco-friendly features. The new material is expected to behave as one cost-effective and efficient sorbent, including natural carbon structures with various functional groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!