Glutamate that accumulates in injured brain tissue has been shown to hinder the neuroprotection rendered by insulin-like growth factor-1 (IGF-1). However, its role in attenuating the neuroprotective effect of IGF-1 in the hypoxic retina is unknown and the current study was aimed at elucidating this. One-day-old Wistar rats were exposed to hypoxia for 2 h and the retinas were studied at 3 h to 14 days after exposure. Following hypoxia, the concentrations of glutamate and IGF-1 were significantly increased over control values in the immature retina and in cultured retinal ganglion cells (RGCs). In addition to IGF-1, the relative expression of insulin receptor substrate-1 (IRS1) phosphorylated at the tyrosine residue (p-IRS1tyr), phosphorylated protein kinase B (p-AKT) and phosphorylated protein kinase A (p-PKA), which are involved in IGF-1 signalling, was also studied in hypoxic retinas and in cultured RGCs. Glutamate-mediated inhibition of the IGF-1 pathway in hypoxic RGCs was evident with a reduced expression of p-IRS1tyr and p-AKT and an increased expression of p-PKA. However, the addition of exogenous IGF-1 reversed this. Glutamate enables the phosphorylation of IRS1 at the serine residue (p-IRS1ser) through a PKA-dependent pathway. The increased expression of p-IRS1ser and its increased association with IGF-1 receptors in hypoxic RGCs suggested a possible interference by glutamate with the IGF-1 pathway. Moreover, there was increased caspase-3/7 activity in hypoxic RGCs. These results suggest that glutamate, by blocking IGF-1-mediated neuroprotection, could cause the apoptosis of RGCs in the hypoxic neonatal retina.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-016-9905-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!