UV + V UV double-resonance studies of autoionizing Rydberg states of the hydroxyl radical.

J Chem Phys

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.

Published: May 2016

The hydroxyl radical (OH) is a key oxidant in atmospheric and combustion chemistry. Recently, a sensitive and state-selective ionization method has been developed for detection of the OH radical that utilizes UV excitation on the A(2)Σ(+)-X(2)Π transition followed by fixed 118 nm vacuum ultraviolet (VUV) radiation to access autoionizing Rydberg states [J. M. Beames et al., J. Chem. Phys. 134, 241102 (2011)]. The present study uses tunable VUV radiation generated by four-wave mixing to examine the origin of the enhanced ionization efficiency observed for OH radicals prepared in specific A(2)Σ(+) intermediate levels. The enhancement is shown to arise from resonant excitation to distinct rotational and fine structure levels of two newly identified (2)Π Rydberg states with an A(3)Π cationic core and a 3d electron followed by ionization. Spectroscopic constants are derived and effects due to uncoupling of the Rydberg electron are revealed for the OH (2)Π Rydberg states. The linewidths indicate a Rydberg state lifetime due to autoionization on the order of a picosecond.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4948640DOI Listing

Publication Analysis

Top Keywords

rydberg states
16
autoionizing rydberg
8
hydroxyl radical
8
vuv radiation
8
2Π rydberg
8
rydberg
6
double-resonance studies
4
studies autoionizing
4
states
4
states hydroxyl
4

Similar Publications

The floating phase, a critical incommensurate phase, has been theoretically predicted as a potential intermediate phase between crystalline ordered and disordered phases. In this study, we investigate the different quantum phases that arise in ladder arrays comprising up to 92 neutral-atom qubits and experimentally observe the emergence of the quantum floating phase. We analyze the site-resolved Rydberg state densities and the distribution of state occurrences.

View Article and Find Full Text PDF

We study resonance redistribution mechanisms inside a hot vapor cell. This is achieved by pumping cesium atoms on the 6S→6P resonance and subsequently probing the velocity distribution of the 6P population by a linear absorption experiment on the 6P→16S or 6P→15D transitions at 514 nm and 512 nm, respectively. We demonstrate that despite the existence of thermalization processes, traces of the initial velocity selection, imposed by the pump, survive in hyperfine levels of the intermediate (6P) state.

View Article and Find Full Text PDF

Atoms in Rydberg states are an important building block for emerging quantum technologies. While excitation to Rydberg orbitals is typically achieved in more than tens of nanoseconds, the physical limit is in fact much faster, at the ten picoseconds level. Here, we tackle such ultrafast Rydberg excitation of a rubidium atom by designing a dedicated pulsed laser system generating 480 nm pulses of 10 ps duration.

View Article and Find Full Text PDF

Two synchrotron-based studies on 4H-pyran-4-thione, photoelectron spectroscopy and vacuum ultraviolet (VUV) absorption spectra were performed. A highly resolved structure was observed in the photoelectron spectrum (PES), in contrast to an earlier PES study, where little structure was observed. The sequence of ionic states was determined using configuration interaction and coupled cluster methods.

View Article and Find Full Text PDF

Partial wave analysis is key to interpretation of the photoionization of atoms and molecules on the attosecond timescale. Here we propose a heterodyne analysis approach, based on the delay-resolved anisotropy parameters to reveal the role played by high-order partial waves during photoionization. This extends the Reconstruction of Attosecond Beating By Interference of Two-photon Transitions technique into the few-photon regime.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!