Generalized quantum master equations (GQMEs) are an important tool in modeling chemical and physical processes. For a large number of problems, it has been shown that exact and approximate quantum dynamics methods can be made dramatically more efficient, and in the latter case more accurate, by proceeding via the GQME formalism. However, there are many situations where utilizing the GQME approach with an approximate method has been observed to return the same dynamics as using that method directly. Here, for systems both in and out of equilibrium, we provide a more detailed understanding of the conditions under which using an approximate method can yield benefits when combined with the GQME formalism. In particular, we demonstrate the necessary manipulations, which are satisfied by exact quantum dynamics, that are required to recast the memory kernel in a form that can be analytically shown to yield the same result as a direct application of the dynamics regardless of the approximation used. By considering the connections between these forms of the kernel, we derive the conditions that approximate methods must satisfy if they are to offer different results when used in conjunction with the GQME formalism. These analytical results thus provide new insights as to when proceeding via the GQME approach can be used to improve the accuracy of simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4948612 | DOI Listing |
J Chem Phys
December 2022
Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland.
The formalism of the generalized quantum master equation (GQME) is an effective tool to simultaneously increase the accuracy and the efficiency of quasiclassical trajectory methods in the simulation of nonadiabatic quantum dynamics. The GQME expresses correlation functions in terms of a non-Markovian equation of motion, involving memory kernels that are typically fast-decaying and can therefore be computed by short-time quasiclassical trajectories. In this paper, we study the approximate solution of the GQME, obtained by calculating the kernels with two methods: Ehrenfest mean-field theory and spin-mapping.
View Article and Find Full Text PDFJ Chem Phys
January 2022
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
We describe a general-purpose framework for formulating the dynamics of any subset of electronic reduced density matrix elements in terms of a formally exact generalized quantum master equation (GQME). Within this framework, the effect of coupling to the nuclear degrees of freedom, as well as to any projected-out electronic reduced density matrix elements, is captured by a memory kernel and an inhomogeneous term, whose dimensionalities are dictated by the number of electronic reduced density matrix elements included in the subset of interest. We show that the memory kernel and inhomogeneous term within such GQMEs can be calculated from projection-free inputs of the same dimensionality, which can be cast in terms of the corresponding subsets of overall system two-time correlation functions.
View Article and Find Full Text PDFJ Chem Phys
May 2021
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
The generalized quantum master equation (GQME) provides a general and formally exact framework for simulating the reduced dynamics of open quantum systems. The recently introduced modified approach to the GQME (M-GQME) corresponds to a specific implementation of the GQME that is geared toward simulating the dynamics of the electronic reduced density matrix in systems governed by an excitonic Hamiltonian. Such a Hamiltonian, which is often used for describing energy and charge transfer dynamics in complex molecular systems, is given in terms of diabatic electronic states that are coupled to each other and correspond to different nuclear Hamiltonians.
View Article and Find Full Text PDFJ Chem Phys
January 2019
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
We present a modified approach for simulating electronically nonadiabatic dynamics based on the Nakajima-Zwanzig generalized quantum master equation (GQME). The modified approach utilizes the fact that the Nakajima-Zwanzig formalism does not require casting the overall Hamiltonian in system-bath form, which is arguably neither natural nor convenient in the case of the Hamiltonian that governs nonadiabatic dynamics. Within the modified approach, the effect of the nuclear degrees of freedom on the time evolution of the electronic reduced density operator is fully captured by a memory kernel super-operator.
View Article and Find Full Text PDFJ Chem Phys
May 2016
Department of Chemistry, Stanford University, Stanford, California 94305, USA.
Generalized quantum master equations (GQMEs) are an important tool in modeling chemical and physical processes. For a large number of problems, it has been shown that exact and approximate quantum dynamics methods can be made dramatically more efficient, and in the latter case more accurate, by proceeding via the GQME formalism. However, there are many situations where utilizing the GQME approach with an approximate method has been observed to return the same dynamics as using that method directly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!