A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

One-step synthesis, biodegradation and biocompatibility of polyesters based on the metabolic synthon, dihydroxyacetone. | LitMetric

One-step synthesis, biodegradation and biocompatibility of polyesters based on the metabolic synthon, dihydroxyacetone.

Biomaterials

Meinig School of Biomedical Engineering, Cornell University, Ithaca NY 14853, USA; Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca NY 14853, USA. Electronic address:

Published: August 2016

The one-step synthesis of a polyester family containing dihydroxyacetone is described along with a quantitative analysis of in vitro/in vivo degradation kinetics and initial biocompatibility. Polyesters were synthesized by combining dihydroxyacetone, which is a diol found in the eukaryotic glucose metabolic pathway, with even-carbon aliphatic diacids (adipic, suberic, sebacic) represented in the long-chain alpha carboxylic acid metabolic pathway, by Schӧtten-Baumann acylation. We show that by using a crystalline monomeric form of dihydroxyacetone, well-defined polyesters can be formed in one step without protection and deprotection strategies. Both diacid length and polyester molecular weight were varied to influence polymer physical and thermal properties. Polyesters were generated with number-averaged (Mn) molecular weights ranging from 2200-11,500. Polydispersities were consistent with step-growth polymerization and ranged from 2 to 2.6. The melting (Tm) and recrystallization (Tc) temperatures were impacted in an unpredictable manner. Thermal transitions for the polyesters were highest for the adipic acid followed by suberic acid and sebacic acid, respectively. It was shown that the thermal response of the DHA-based polyesters was influenced by both the diacid length and molecular weight. In vitro degradation studies revealed first-order weight loss kinetics, the molecular weight loss followed first order kinetics with 25%-40% of the original mass remaining after 8 weeks. In vivo testing over 16 weeks highlighted that mass loss ranged from ∼70% to ∼6% depending upon initial molecular weight and diacid length. Histological analysis revealed rapid resolution of both acute and chronic inflammatory responses, normal foreign body responses were observed and no inflammation was present after week 4. This one-step synthesis proved robust with unique copolymers warranting further study as potential biomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2016.04.042DOI Listing

Publication Analysis

Top Keywords

molecular weight
16
one-step synthesis
12
diacid length
12
biocompatibility polyesters
8
metabolic pathway
8
weight loss
8
polyesters
6
molecular
5
weight
5
synthesis biodegradation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!