Segmentation of the placenta from fetal MRI is challenging due to sparse acquisition, inter-slice motion, and the widely varying position and shape of the placenta between pregnant women. We propose a minimally interactive framework that combines multiple volumes acquired in different views to obtain accurate segmentation of the placenta. In the first phase, a minimally interactive slice-by-slice propagation method called Slic-Seg is used to obtain an initial segmentation from a single motion-corrupted sparse volume image. It combines high-level features, online Random Forests and Conditional Random Fields, and only needs user interactions in a single slice. In the second phase, to take advantage of the complementary resolution in multiple volumes acquired in different views, we further propose a probability-based 4D Graph Cuts method to refine the initial segmentations using inter-slice and inter-image consistency. We used our minimally interactive framework to examine the placentas of 16 mid-gestation patients from MRI acquired in axial and sagittal views respectively. The results show the proposed method has 1) a good performance even in cases where sparse scribbles provided by the user lead to poor results with the competitive propagation approaches; 2) a good interactivity with low intra- and inter-operator variability; 3) higher accuracy than state-of-the-art interactive segmentation methods; and 4) an improved accuracy due to the co-segmentation based refinement, which outperforms single volume or intensity-based Graph Cuts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052128 | PMC |
http://dx.doi.org/10.1016/j.media.2016.04.009 | DOI Listing |
BJOG
January 2025
Division of Urogynecology, Urology Institute, University Hospitals Cleveland, Cleveland, Ohio, USA.
Objective: To determine whether there is an operative time threshold beyond which minimally invasive sacrocolpopexy (MI-SCP) is less beneficial than abdominal sacrocolpopexy (ASCP).
Design: Retrospective analysis.
Setting: The National Surgical Quality Improvement Program (NSQIP) database.
J Transl Med
January 2025
Dental School, The University of Western Australia, 17 Monash Avenue, Nedlands, WA, 6009, Australia.
Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.
View Article and Find Full Text PDFLab Chip
January 2025
Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia.
Liquid biopsy provides a minimally invasive approach to characterise the molecular and phenotypic characteristics of a patient's individual tumour by detecting evidence of cancerous change in readily available body fluids, usually the blood. When applied at multiple points during the disease journey, it can be used to monitor a patient's response to treatment and to personalise clinical management based on changes in disease burden and molecular findings. Traditional liquid biopsy approaches such as quantitative PCR, have tended to look at only a few biomarkers, and are aimed at early detection of disease or disease relapse using predefined markers.
View Article and Find Full Text PDFNucl Med Commun
February 2025
Department of Radiology, Netherlands Cancer Institute- Antoni van Leeuwenhoekziekenhuis, Amsterdam, The Netherlands.
Background: Small-molecule biomacromolecules target tumor-specific antigens. They are employed as theranostic agents for imaging and treatment. Intravenous small-molecule radioligands exhibit rapid tumor uptake and excretion.
View Article and Find Full Text PDFCirc Res
January 2025
Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.).
Background: Cardiac ischemia/reperfusion disrupts plasma membrane integrity and induces various types of programmed cell death. The ESCRT (endosomal sorting complex required for transport) proteins, particularly AAA-ATPase Vps4a (vacuolar protein sorting 4a), play an essential role in the surveillance of membrane integrity. However, the role of ESCRT proteins in the context of cardiac injury remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!