Purpose: The goal of this study was to prepare a synthetic peptide derived from breast tumor associated antigen and to evaluate its potential as a breast cancer imaging agent.
Methods: A mucin 1 derived peptide was synthesized by solid-phase peptide synthesis and examined for its radiochemical and metabolic stability. The tumor cell binding affinity of (99m)Tc-MUC1 peptide was investigated on MUC1-positive T47D and MCF7 breast cancer cell lines. In vivo biodistribution was studied in normal Balb/c mice and in vivo tumor targeting and imaging in MCF7 and T47D tumor-bearing nude mice.
Results: The synthesized MUC1-derived peptide displayed high radiochemical and metabolic stability. In vitro tumor cell-binding on T47D and MCF7 cell lines demonstrated high affinity of (99m)Tc-MUC1 peptide towards human breast cancer cells (binding affinities in nanomolar range). Pharmacokinetic studies performed on Balb/c mice are characterized by an efficient clearance from the blood and excretion predominantly through the urinary system. In vivo tumor uptake in nude mice with MCF7 tumor xenografts was 2.77±0.63% ID/g as early as 1h p.i. whereas in nude mice with T47D human ductal breast epithelial cancer cells, the accumulation in the tumor was found to be 2.65±0.54% ID/g at 1h p.i. Also tumor lesion was detectable in γ-camera imaging. The tumor uptake values were always higher than the blood and muscle uptake, with good tumor retention and good tumor-to-blood and tumor-to-muscle ratios. A low to moderate (<5% ID/g) accumulation and retention of (99m)Tc-MUC1 was found in the major organs (i.e., lungs, stomach, liver, intestines, kidneys, etc.) in both normal and tumor-bearing mice.
Conclusion: This study suggests that (99m)Tc-MUC1 tumor-antigen peptide may be a potential candidate for the targeted imaging of MUC1-positive human tumors and warrants further investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nucmedbio.2016.03.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!