The modular architecture of aureochrome blue light receptors, found in several algal groups including diatoms, is unique by having the LOV-type photoreceptor domain fused to the C-terminus of its putative effector, an N-terminal DNA-binding bZIP module. The structural and functional understanding of aureochromes' light-dependent signaling mechanism is limited, despite their promise as an optogenetic tool. We show that class I aureochromes 1a and 1c from the diatom Phaeodactylum tricornutum are regulated in a light-independent circadian rhythm. These aureochromes are capable to form functional homo- and heterodimers, which recognize the ACGT core sequence within the canonical 'aureo box', TGACGT, in a light-independent manner. The bZIP domain holds a more folded and less flexible but extended conformation in the duplex DNA-bound state. FT-IR spectroscopy in the absence and the presence of DNA shows light-dependent helix unfolding in the LOV domain, which leads to conformational changes in the bZIP region. The solution structure of DNA bound to aureochrome points to a tilted orientation that was further validated by molecular dynamics simulations. We propose that aureochrome signaling relies on an allosteric pathway from LOV to bZIP that results in conformational changes near the bZIP-DNA interface without major effects on the binding affinity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937327 | PMC |
http://dx.doi.org/10.1093/nar/gkw420 | DOI Listing |
Front Microbiol
July 2019
Laboratory of Genome Informatics, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.
Aquaculture industries are under threat from noxious red tides, but harm can be mitigated by precautions such as early harvesting and restricting fish feeding to just before the outbreak of a red tide. Therefore, accurate techniques for forecasting red-tide outbreaks are strongly needed. Omics analyses have the potential to expand our understanding of the eco-physiology of these organisms at the molecular level, and to facilitate identification of molecular markers for forecasting their population dynamics and occurrence of damages to fisheries.
View Article and Find Full Text PDFNucleic Acids Res
July 2016
Physical and Biophysical Chemistry - Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
The modular architecture of aureochrome blue light receptors, found in several algal groups including diatoms, is unique by having the LOV-type photoreceptor domain fused to the C-terminus of its putative effector, an N-terminal DNA-binding bZIP module. The structural and functional understanding of aureochromes' light-dependent signaling mechanism is limited, despite their promise as an optogenetic tool. We show that class I aureochromes 1a and 1c from the diatom Phaeodactylum tricornutum are regulated in a light-independent circadian rhythm.
View Article and Find Full Text PDFStructure
January 2016
Structural Biochemistry - Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany. Electronic address:
Light-oxygen-voltage (LOV) domains absorb blue light for mediating various biological responses in all three domains of life. Aureochromes from stramenopile algae represent a subfamily of photoreceptors that differs by its inversed topology with a C-terminal LOV sensor and an N-terminal effector (basic region leucine zipper, bZIP) domain. We crystallized the LOV domain including its flanking helices, A'α and Jα, of aureochrome 1a from Phaeodactylum tricornutum in the dark state and solved the structure at 2.
View Article and Find Full Text PDFPlant J
February 2011
UPMC Univ Paris 06, CNRS, UMR7621 Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66651, Banyuls-sur-Mer, France.
The marine environment has unique properties of light transmission, with an attenuation of long wavelengths within the first meters of the water column. Marine organisms have therefore evolved specific blue-light receptors such as aureochromes to absorb shorter-wavelength light. Here, we identify and characterize a light, oxygen, or voltage sensing (LOV) containing histidine kinase (LOV-HK) that functions as a new class of eukaryotic blue-light receptor in the pico-phytoplanktonic cell Ostreococcus tauri.
View Article and Find Full Text PDFJ Bacteriol
December 2009
Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
Plants and fungi respond to environmental light stimuli via the action of different photoreceptor modules. One such class, responding to the blue region of light, is constituted by photoreceptors containing so-called light-oxygen-voltage (LOV) domains as sensor modules. Four major LOV families are currently identified in eukaryotes: (i) the plant phototropins, regulating various physiological effects such as phototropism, chloroplast relocation, and stomatal opening; (ii) the aureochromes, mediating photomorphogenesis in photosynthetic stramenopile algae; (iii) the plant circadian photoreceptors of the zeitlupe (ZTL)/adagio (ADO)/flavin-binding Kelch repeat F-box protein 1 (FKF1) family; and (iv) the fungal circadian photoreceptors white-collar 1 (WC-1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!