Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: An attempt to fabricate and scale the 'Green' composite.

Carbohydr Polym

Tribology Lab and Center for Advanced Materials Manufacturing, Department of Materials Science and Engineering, College of Engineering & Applied Science, University of Wisconsin, Milwaukee, WI 53211, USA.

Published: August 2016

The development of bio-based composites is essential in order to protect the environment while enhancing energy efficiencies. In the present investigation, the plant-derived cellulose nano-fibers (CNFs)/bio-based epoxy composites were manufactured using the Liquid Composite Molding (LCM) process. More specifically, the CNFs with and without chemical modification were utilized in the composites. The curing kinetics of the prepared composites was studied using both the isothermal and dynamic Differential Scanning Calorimetry (DSC) methods. The microstructure as well as the mechanical and tribological properties were investigated on the cured composites in order to understand the structure-property correlations of the composites. The results indicated that the manufactured composites showed improved mechanical and tribological properties when compared to the pure epoxy samples. Furthermore, the chemically modified CNFs reinforced composites outperformed the untreated composites. The surface modification of the fibers improved the curing of the resin by reducing the activation energy, and led to an improvement in the mechanical properties. The CNFs/bio-based epoxy composites form uniform tribo-layer during sliding which minimizes the direct contact between surfaces, thus reducing both the friction and wear of the composites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2016.03.097DOI Listing

Publication Analysis

Top Keywords

composites
12
cnfs/bio-based epoxy
8
epoxy composites
8
mechanical tribological
8
tribological properties
8
mechanical
4
mechanical physical
4
physical tribological
4
tribological characterization
4
characterization nano-cellulose
4

Similar Publications

Introduction: Obesity in older adults is linked to various chronic conditions and decreased quality of life. Traditional physical activity guidelines often overlook the specific postures and movements that older adults engage in daily. This study aims to explore the compositional associations between posture-specific behaviours and obesity risk in younger (M = 67.

View Article and Find Full Text PDF

The Kuril Islands are located in the Far-East of Russia and enriched with shallow and terrestrial hot springs. Prokaryotic diversity of Kuril geothermal environments has been studied fragmentarily and mainly by culture-dependent methods. We performed the first large-scale investigation of microbial communities, inhabited more than 30 terrestrial hot springs of Kunashir and Iturup Islands, analyzed by 16S rRNA gene fragment amplicon sequencing, together with chemical analysis of thermal waters and sediments.

View Article and Find Full Text PDF

Objectives: This study aimed to verify if composites containing dicalcium phosphate dihydrate particles (DCPD) are able to induce dentin remineralization in vitro. Additionally, the mechanical properties of the materials were tested.

Methods: Four composites with 50 vol% inorganic content and 1 BisGMA: 1 TEGDMA (mols) were prepared, with different DCPD:glass ratios (50:0, 40:10, 30:20 and 0:50).

View Article and Find Full Text PDF

Background: Sedentary behaviour (SB) is detrimental to cardiometabolic disease (CMD) risk, which can begin in young adulthood. To devise effective SB-CMD interventions in young adults, it is important to understand which context-specific SB (CS-SB) are most detrimental for CMD risk, the lifestyle behaviours that cluster with CS-SBs and the socioecological predictors of CS-SB.

Methods And Analysis: This longitudinal observational study will recruit 500 college-aged (18-24 years) individuals.

View Article and Find Full Text PDF

Introduction: Donor human milk (DHM) is the first alternative if mother's own milk is unavailable or contraindicated. Much DHM research has focused on its nutritional, immunological and biochemical composition in response to various maternal variables, standard human milk banking procedures and storage protocols. The current systematic review protocol, however, aims to systematically gather and analyse existing data pertaining to the impact of these aforementioned factors on the clinical, health-related and developmental outcomes observed in infants fed with DHM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!